Tristan Montoya

tmontoya@uni-koeln.de

tjbmontoya.com

EDUCATION

Doctor of Philosophy, Aerospace Science and Engineering University of Toronto

Thesis: Provably stable discontinuous spectral-element methods with the summation-by-parts property: Unified matrix analysis and efficient tensor-product formulations on curved simplices Advisor: David Zingg

Bachelor of Engineering, Mechanical Engineering Carleton University

CURRENT POSITION

Postdoctoral Researcher University of Cologne

September 2014 – June 2018 Ottawa, Canada

September 2018 – June 2024

Toronto, Canada

January 2024 - Present Cologne, Germany

Project: Efficient and robust discontinuous spectral-element methods for the ICON-DG atmospheric dynamical core; partnership with the Deutscher Wetterdienst (DWD) and German Aerospace Center (DLR) funded by the German Federal Ministry of Education and Research (BMBF) as part of the WarmWorld project on exascale Earth system models for kilometre-scale climate predictions

Advisor: Gregor Gassner

PUBLICATIONS IN PEER-REVIEWED JOURNALS

T. Montoya and D. W. Zingg, Efficient entropy-stable discontinuous spectral-element methods using tensor-product summation-by-parts operators on triangles and tetrahedra. Journal of Computational Physics 516, 2024.

T. Montoya and D. W. Zingg, Efficient tensor-product spectral-element operators with the summation-by-parts property on curved triangles and tetrahedra. SIAM Journal on Scientific Computing 46(4), 2024.

T. Montoya and D. W. Zingg, A unifying algebraic framework for discontinuous Galerkin and flux reconstruction methods based on the summation-by-parts property. Journal of Scientific Computing 92(3), 2022.

PUBLICATIONS IN CONFERENCE PROCEEDINGS

T. Montoya and D. W. Zingg, Stable and conservative high-order methods on triangular elements using tensor-product summation-by-parts operators. 11th International Conference on Computational Fluid Dynamics, 2022. Awarded best student paper.

SELECTED TALKS (EXCLUDING ABOVE PROCEEDINGS)

T. Montoya and D. W. Zingg, Efficient entropy-stable discontinuous spectral-element methods in collapsed coordinates for hyperbolic systems on curved triangular and tetrahedral meshes. Contributed talk, Canadian Applied and Industrial Mathematics Society Annual Meeting, 2024.

T. Montoya and D. W. Zingg, Efficient entropy-stable tensor-product spectral-element methods on simplices. Contributed talk, 9th European Congress on Computational Methods in Applied Sciences and Engineering, 2024.

T. Montoya and D. W. Zingg, Efficient tensor-product spectral-element methods with the summation-by-parts property on triangles and tetrahedra. Contributed talk, SIAM Conference on Computational Science and Engineering, 2023.

T. Montoya and D.W. Zingg, Efficient and robust spectral-element methods on triangles using tensor-product summation-by-parts operators. Invited talk, NASA Advanced Modeling and Simulation (AMS) Seminar Series, 2022.

T. Montoya and D. W. Zingg, Unified analysis of discontinuous Galerkin and flux reconstruction methods based on the summation-by-parts property. Contributed talk, International Conference on Spectral and High-Order Methods, 2021.

T. Montoya and D. W. Zingg, Unified analysis of high-order methods based on the summation-by-parts property: Application to discontinuous Galerkin and flux reconstruction discretizations. Contributed talk, SIAM Conference on Computational Science and Engineering, 2021.

OTHER APPOINTMENTS

Visiting Researcher National University of Singapore	August 2022 Singapore	
Project: Koopman operator approaches to data-driven stability analysis of numerical m Advisor: Gianmarco Mengaldo	nethods	
Undergraduate Student Researcher University of Toronto	May 2017 – August 2017 Toronto, Canada	
Projects: Optimization of finite-difference operators with the summation-by-parts property on non-uniform nodal distributions; comparison of continuation methods for steady aerodynamic flows Advisor: David Zingg		
Undergraduate Student Researcher <i>McGill University</i>	May 2016 – August 2016 Montreal, Canada	
Project: Robust deformation of unstructured grids using radial basis functions and linear elasticity Advisor: Siva Nadarajah		
Undergraduate Student Researcher Carleton University	May 2015 – August 2015 Ottawa, Canada	

Carleton University

Projects: Optimal estimation of uncertain parameters in computer models of welding processes; novel interpolation techniques for stress and strain tensor fields using quaternions Advisor: John Goldak

AWARDS AND SCHOLARSHIPS

Best Student Paper. International Conference on Computational Fluid Dynamics	2022
Ontario Graduate Scholarship	2019 - 2020, 2022 - 2023
Kenneth Molson Fellowship	2021 – 2022, 2022 – 2023
Queen Elizabeth II Graduate Scholarship in Science and Technology	2020 - 2021, 2021 - 2022
Douglas Patton Hogg Memorial Award	2021
NSERC Canada Graduate Scholarship - Master's	2018 - 2019
University Medal (highest academic standing of any Bachelor of Engineering grad	uate) 2018
Canadian Society for Mechanical Engineering Gold Medal	2018
Rajesh Ahluwalia Memorial Scholarship	2017 - 2018
NSERC Undergraduate Student Research Award	2015, 2017
McGill University Summer Undergraduate Research in Engineering Award	2016
Allan Buchanan Undergraduate Scholarship	2015 – 2016
Deans' Honour List	2014 – 2018
Faculty Scholarship	2014 - 2018
SUPERVISION OF GRADUATE AND UNDERGRADUATE RESEARCH	
Paula Weiß, Master of Science thesis student	August 2024 – Present
University of Cologne (Co-supervised with Gregor Gassner and Benedict Geihe)	Cologne, Germany
Project: High-order vertical discretizations for nonhydrostatic atmospheric models	5
Fabian Höck. Master of Science thesis student	April 2024 – Present
<i>University of Cologne (Co-supervised with Gregor Gassner and Benedict Geihe)</i>	Cologne, Germany
Project: Discontinuous Galerkin methods for moist atmospheric flows with rain	
Ruilin (Jerry) Bai, Bachelor of Applied Science student intern	September 2020 – December 2020
University of Toronto (Co-supervised with David Zingg)	Toronto, Canada
Project: Optimization of summation-by-parts operators for minimal solution error	
Yewon Lee, Bachelor of Applied Science student intern	May 2019 – August 2019
University of Toronto (Co-supervised with David Zingg and Masayuki Yano)	Toronto, Canada
Project Componenting evaluation of anony and entropy stable discontinuous (Colorlyin and summation by name

Project: Comparative evaluation of energy- and entropy-stable discontinuous Galerkin and summation-by-parts methods

OPEN-SOURCE SOFTWARE CONTRIBUTIONS AS PRINCIPAL DEVELOPER

TrixiAtmo.jl

Julia package extending the Trixi.jl numerical framework for conservation laws to enable the solution of atmospheric flow problems using a high-order discontinuous spectral-element dynamical core

StableSpectralElements.jl

https://github.com/tristanmontoya/StableSpectralElements.jl

https://github.com/trixi-framework/TrixiAtmo.jl

Julia framework for energy-stable and entropy-stable discontinuous spectral-element methods on general element types based on multidimensional and tensor-product formulations; emphasis on dispatched strategies for matrix-based and matrix-free operator evaluation

GHOST: Generalized High-Order Solver Toolbox

Python implementation of discontinuous Galerkin and flux reconstruction schemes in one or two spatial dimensions with various design choices

OTHER OPEN-SOURCE SOFTWARE CONTRIBUTIONS

Trixi.jl

https://github.com/trixi-framework/Trixi.jl

Modified mesh data type to enable the solution of partial differential equations on surfaces

NodesAndModes.jl

https://github.com/jlchan/NodesAndModes.jl

Added high-order symmetric quadrature rules on triangular and tetrahedral elements

TEACHING

Scientific Computing: Introduction to the Simulation of Atmospheric Flows University of Cologne

Assisted in the development and delivery of a new graduate-level course on numerical methods for atmospheric flows, focusing on theoretical and computational aspects of modern high-order discretizations applied to atmospheric simulations; created final project in which students implement a discontinuous Galerkin solver for the shallow water equations on the cubed sphere in Julia and assess its effectiveness for a series of standard atmospheric test problems

SERVICE

Lab Representative, Computational Aerodynamics	December 2021 – June 2024
Centre for Computational Science and Engineering	Toronto, Canada
Member of the student organizing committee for an interdepartmental group of research	rchers at the University of Toronto
across various disciplines of computational science and engineering	

Editor, Physics and Mathematics Section

Canadian Science Fair Journal

Volunteer editor and mentor for an open-access journal showcasing science projects by students at primary and secondary schools across Canada

TECHNICAL SKILLS

Programming languages	Julia, Python (NumPy/SciPy), C, C++, Матгав, Fortran, IATEX
Development tools	Unix shell, Git, GNU Make, Anaconda, Jupyter Notebook, VS Code,
	Vim, Emacs, Slurm

OTHER ACTIVITIES

Music (performing guitarist/bassist), cycling, alpine skiing (former ski instructor), non-fiction reading

CITIZENSHIP

Canada, France

June 2022 – March 2024

April 2024 – July 2024

Cologne, Germany

https://github.com/tristanmontoya/GHOST

equations on surfaces