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Abstract

Discontinuous spectral-element methods (DSEMs) provide a flexible high-order spatial dis-

cretization approach for time-dependent conservation laws, but are traditionally regarded as

lacking robustness relative to conventional second-order numerical methods for such partial

differential equations. This thesis describes a unifying matrix analysis framework based on the

summation-by-parts (SBP) property for the construction and analysis of DSEMs which are

provably stable for linear or nonlinear hyperbolic problems. Within such a framework, we ob-

tain algebraic proofs of conservation and energy stability as well as of the discrete equivalence

between strong and weak formulations for discontinuous Galerkin and flux reconstruction

schemes on general element types. The proposed methodology is also applied to the develop-

ment of a new class of efficient and robust DSEMs on triangles and tetrahedra through the

construction of sparse tensor-product operators in collapsed coordinates which satisfy the SBP

property and are amenable to efficient sum-factorization algorithms. These SBP operators are

used to construct split-form and flux-differencing DSEMs on curved triangular and tetrahedral

unstructured grids which are conservative, free-stream preserving, and energy-stable for the

linear advection equation or entropy stable for nonlinear hyperbolic systems. By exploiting

the structure of the proposed operators as well as that of the Proriol–Koornwinder–Dubiner

polynomial basis and using a weight-adjusted approximation to avoid the inversion of the

curvilinear modal mass matrix, we obtain fully explicit algorithms of reduced complexity

which facilitate the efficient extension of provably stable DSEMs on triangles and tetrahedra

to arbitrarily high-order accuracy. The proposed schemes are compared to non-tensorial

energy- and entropy-stable formulations on triangles and tetrahedra in a series of numerical

experiments involving the solution of the linear advection and compressible Euler equations.
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Chapter 1

Introduction

Hyperbolic or advection-dominated systems of time-dependent conservation laws constitute a
class of partial differential equations (PDEs) of considerable importance in numerous scientific
and engineering disciplines. For example, electromagnetic, geophysical, and acoustic wave
propagation can be modelled by linear hyperbolic systems, whereas atmospheric, aerodynamic,
and magnetohydrodynamic fluid flow problems are typically modelled by nonlinear hyperbolic
and mixed hyperbolic-parabolic systems. These PDEs present significant challenges in the
design of efficient, automated, and robust numerical methods, especially when a wide range of
spatial and temporal scales are present. Although such behaviour is particularly characteristic
of nonlinear problems, for example, in the context of scale-resolving simulations of turbulent
flow (see, for example, Wang et al. [1]), similar challenges arise when simulating linear wave
propagation over distances much larger than the wavelength (see, for example, Kreiss and
Oliger [2] as well as Zingg [3]). Discontinuous spectral-element methods (DSEMs) have emerged
as an attractive numerical approach for these problems, where we use such terminology in a
general sense to refer to any spatial discretization with the following characteristics.

• The spatial domain is subdivided into elements, each containing one or more degrees of
freedom (e.g. nodal values or modal expansion coefficients). Local refinement can be
performed either by decreasing the element size (h-refinement) or increasing the order
of the approximation within an element (p-refinement).

• The numerical solution is not required to be continuous at element interfaces. Boundary
conditions and inter-element coupling are imposed weakly using numerical fluxes or
penalty terms, aside from which all operations are entirely local to a given element.

These methods have received considerable attention in recent years due to their performance
on modern hardware (see, for example, Klöckner et al. [4], Abdi et al. [5], and Vermiere et al.
[6]) resulting from their relatively high arithmetic intensity (i.e. the ratio of floating-point
operations to memory accesses) and data locality. Moreover, DSEMs are highly flexible
in their support for general unstructured grids as well as their amenability to adaptation,

1



Chapter 1. Introduction 2

facilitating the efficient and automated solution of physically and geometrically complex
problems, as exemplified in recent work by Parsani et al. [7] and Mossier et al. [8].

Although they offer the potential for improved efficiency relative to the low-order finite-
difference, finite-volume, and finite-element methods (i.e. those of at most second-order
accuracy) which continue to drive the majority of computational physics simulations, DSEMs,
like most high-order methods, are regarded to be more prone to numerical instability when
applied to nonlinear or variable-coefficient problems as well as when using curvilinear meshes.
While the use of an upwind numerical flux at element interfaces often provides sufficient
dissipation to obtain a stable simulation, practitioners applying DSEMs to problems involving
under-resolved scales often employ additional regularization techniques such as modal filtering
or de-aliasing approaches based on over-integration to address such robustness issues in
practice (see, for example, Gassner and Beck [9] and Mengaldo et al. [10]). However,
regularization approaches generally require problem-specific parameter tuning to ensure that
the enhanced robustness is obtained without significant detriment to the accuracy of the
simulation,1 whereas over-integration incurs significant computational expense while still not
ensuring stability for nonlinear systems (see, for example, Winters et al. [12]).

Modern formulations based on the summation-by-parts (SBP) property produce math-
ematical guarantees that discretizations will respect certain auxiliary integral balances or
invariants satisfied by the linear or nonlinear PDEs they approximate, such as those governing
the conservation or dissipation of energy or entropy. Satisfying such auxiliary balances ensures
that important physical constraints such as the second law of thermodynamics cannot be
violated by a numerical method, and there is strong numerical evidence suggesting that such
schemes are more robust than conventional high-order methods, for which such balances are
not guaranteed to hold (see, for example, the review by Gassner and Winters [13]). Energy
and entropy balances are also important in a mathematical sense as they can, under certain
conditions, enable one to bound the numerical solution a priori in terms of the initial and
boundary data to obtain a provably stable discretization in a rigorous sense. Moreover, the
theoretical underpinnings of the SBP approach are applicable to a wide variety of numerical
methods, relying on the algebraic properties of the matrix operators which constitute a
given discretization, rather than the specifics of how such a discretization was constructed.
The SBP property can therefore be viewed as providing a unifying algebraic framework for
the construction and analysis of numerical methods for conservation laws. This perspective
is the focus of the present work, in which we aim to develop a unifying matrix analysis
framework for energy-stable and entropy-stable DSEMs and to apply such a framework to
the characterization of existing methods as well as the construction of novel discretizations.

1Highlighting the need for a careful balance between accuracy and robustness, Hesthaven and Warburton
recommend in [11, Section 5.3] that one “filter as little as possible [...] but as much as is needed.”
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1.1 Background

Before outlining the main contributions of this thesis, it is helpful to review some of the
historical development of finite-element and spectral methods, discontinuous spectral-element
methods, sum-factorization algorithms, summation-by-parts operators, and entropy-stable
schemes, in order to situate such contributions within the context of the broader literature.

1.1.1 Finite-element and spectral methods

Modern spectral-element methods are the result of a confluence of advances in spectral and
finite-element methods. These methods share a common origin in the work of Bubnov [14],
who in 1913 recognized that the Ritz method [15], which seeks an approximate solution to a
boundary-value problem based on a principle of energy minimization, could be rewritten as
a statement of orthogonality between the residual (i.e. the amount by which the numerical
solution fails to satisfy the exact differential equation) and the basis functions used to
approximate the solution. Galerkin then used Bubnov’s formulation to extend the Ritz
method to a much broader class of problems for which no corresponding minimization
principle exists [16], and the resulting approximation technique would come to be known as a
Bubnov–Galerkin method or simply a Galerkin method. The reader is referred to Gander and
Wanner [17] for an overview of these early contributions.

The first numerical schemes resembling modern finite-element methods were introduced
in the early 1940s, with Courant’s description of an approximation using piecewise linear
functions with compact support on a mesh of triangles often cited as the originating work [18].
Similar ideas, however, were proposed independently by structural engineers (see, for example,
Hrennikoff [19]), and the 1950s and 1960s would see significant progress in the development
of finite-element methods for structural analysis, enabled by the increasing availability and
processing power of digital computers. We note important contributions during this period
by Turner et al. [20], Argyris [21], and Zienkiewicz and Cheung [22].

Beginning in the late 1960s with the influential work of Orszag [23], spectral methods
based on high-order algebraic or trigonometric polynomials with global support emerged as a
popular numerical approach for time-dependent conservation laws, especially for applications
in fluid mechanics, differing substantially from the aforementioned finite-element methods
which had become commonplace in structural applications. By the 1980s, however, advances
in finite-element methods began to trend from low-order piecewise polynomial approximations
towards those of higher order, known as p-version and hp-version finite elements (see, for
example, the review by Babuška and Suri [24]). Meanwhile, multidomain approaches were
introduced within the context of spectral methods to facilitate the treatment of complex
geometries and to enable local refinement, with an early example being the work of Orszag
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[25]. These developments can be interpreted as the convergence of spectral and finite-element
methods to a new class of schemes combining the accuracy of spectral methods with the
flexibility of finite-element methods. In this thesis, we use the term spectral-element method
(SEM), originally coined by Patera [26], to refer to this entire family of methods, noting that
some authors adopt a narrower usage of such terminology, specifically referring to collocated
nodal formulations employing tensor-product Gaussian quadrature rules. We refer to Young
[27] for a historical perspective and some clarification regarding the terminology employed
in the literature relating to collocation-type spectral and spectral-element approximations,
and we note that the first multidomain formulations of such schemes were proposed for
one-dimensional problems by Wheeler [28] and Dı́az [29].

1.1.2 Discontinuous spectral-element methods

Characterized by a Galerkin formulation (i.e. requiring the residual to be orthogonal to test
functions belonging to the same space as the numerical solution) permitting discontinuities
between elements, the first discontinuous Galerkin (DG) methods for hyperbolic PDEs
were introduced by Reed and Hill in 1973 to solve the steady neutron transport equation
[30]. However, it was not until the work of Cockburn, Shu, and collaborators in the late
1980s and 1990s [31–34] combining a DG spatial discretization with explicit Runge-Kutta
time integration and slope limiting that such schemes would begin to gain traction for
time-dependent nonlinear systems. A parallel approach to the construction of DSEMs in
differential form would also materialize in the 1990s and 2000s as a multidomain evolution of
the penalty-type boundary treatment for spectral methods introduced by Funaro and Gottlieb
[35], with popular schemes of such lineage including staggered-grid collocation methods [36]
and spectral-difference methods [37, 38].

Introduced by Huynh in 2007 [39], the flux reconstruction (FR) approach provides a
general methodology for constructing a variety of DSEMs in differential form through the
use of correction functions to reconstruct a continuous flux from the discontinuous numerical
solution. Initially proposed in one spatial dimension, FR methods were subsequently extended
to triangular elements by Wang and Gao [40] through the so-called lifting collocation penalty
formulation and further developed by several other authors, including Vincent et al. [41],
Castonguay et al. [42], and Williams and Jameson [43], who identified one-parameter families
of FR schemes on one-dimensional, triangular, and tetrahedral elements which are energy
stable with respect to particular broken norms of Sobolev type. These energy-stable FR
methods are collectively termed Vincent–Castonguay–Jameson–Huynh (VCJH) schemes.

Although DG methods are derived from a weak (i.e. variational) formulation whereas
FR methods are derived from a strong (i.e. differential) formulation, the two approaches are
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closely related [44–47], with the most popular choice of FR correction function being that
which recovers a strong-form nodal DG method. Furthermore, like all DSEM formulations,
DG and FR methods are both highly amenable to efficient implementation on modern
massively parallel computer architectures, particularly in conjunction with explicit time
integration, with all operations aside from the numerical flux evaluation consisting entirely
of local computations employing highly structured memory access patterns with minimal
indirection. Such arithmetically intense local operations enable the hiding of communication
latency when used within a distributed-memory environment, resulting in parallel algorithms
which scale efficiently to hundreds of thousands of cores. Examples of high-performance
DSEM implementations which have been successfully applied to large-scale problems include
the open-source Nektar++ [48, 49], PyFR [50], and FLEXI [51] solvers.

1.1.3 Sum-factorization algorithms

Spectral and spectral-element methods on domains which are diffeomorphic to the square or
cube offer the natural advantage of supporting sum-factorization algorithms for the efficient
evaluation of tensor-product operators, an approach first described in the context of spectral
methods by Orszag [25]. In such algorithms, multidimensional approximation procedures (e.g.
those involving differentiation or interpolation) using tensor-product bases are decomposed
so as to consist of individual one-dimensional operations, similarly to the application of
one-dimensional stencils in a tensor-product finite-difference scheme. As such algorithms
do not require explicitly forming multidimensional operator matrices, the sum factorization
is often described as a matrix-free approach (see, for example, Kronbichler and Kormann
[52]). Considering a polynomial spectral-element approximation in d dimensions, local
operations such as spatial differentiation are typically of O(p2d) time complexity with respect
to the polynomial degree p when no such tensor-product structure is exploited, whereas sum
factorization generally results in algorithms of O(pd+1) complexity.2 Sum factorization is
therefore considered to be essential to maximizing the efficiency of spectral-element methods
at high polynomial degrees, although, as discussed by Świrydowicz et al. [53], achieving
optimal performance requires some degree of hardware-specific optimization.

The restriction of the classical sum-factorization technique to quadrilaterals in two
dimensions and hexahedra in three dimensions limits the geometric flexibility of the resulting
schemes, whereas the O(p2d) complexity of non-tensor-product discretizations restricts the
range of polynomial degrees which can be efficiently utilized, for example, on triangles
and tetrahedra when using inherently multidimensional formulations. This tradeoff can

2Unless otherwise specified (e.g. when discussing memory usage), the term complexity is taken in this
thesis to denote the asymptotic time complexity of an algorithm on the basis of operation count.
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be reconciled through the use of a collapsed coordinate transformation, sometimes referred
to as a Duffy transformation [54], which allows for the geometric flexibility of simplicial
(e.g. triangular and tetrahedral) elements as well as other element types such as prisms
and pyramids to be combined with the aforementioned computational benefits of a tensor-
product operator structure. Beginning with theoretical development by Dubiner [55] and the
subsequent application of such ideas to continuous Galerkin [56, 57] as well as discontinuous
Galerkin methods [58, 59], collapsed-coordinate formulations have enabled the construction of
efficient discretizations of arbitrary order on general element types (see, for example, Vos et
al. [60] and Cantwell et al. [61]). Furthermore, such schemes have been shown to be amenable
to efficient implementation on modern hardware (see, for example, Moxey et al. [62]).

1.1.4 Summation-by-parts operators

A central component of the framework described in this thesis is the SBP property, which
was introduced in 1974 by Kreiss and Scherer [63] in order to obtain energy-stable high-order
finite-difference methods (i.e. those for which a discrete L2 norm is bounded in terms of the
problem data) for linear hyperbolic problems. By mimicking the integration-by-parts property
of the derivative operator using discrete inner products, the continuous energy estimates
satisfied by standard Galerkin finite-element methods could be extended in a straightforward
manner to finite-difference schemes. Matrix difference operators satisfying such an analogue
of integration by parts are commonly referred to as summation-by-parts operators, for which
boundary conditions and inter-block coupling are typically imposed weakly using simultaneous
approximation terms (SATs), which were developed by Carpenter et al. [64] based on the
penalty approach introduced in [35]. We refer to the review papers by Del Rey Fernández
et al. [65] and Svärd and Nordström [66] for more information regarding the development,
analysis, and application of SBP-SAT finite-difference methods.

Although introduced within a finite-difference setting, the SBP property provides a
general methodology for the construction and analysis of a very broad class of discretizations.
Building on the work of Carpenter and Gottlieb [67] and Kopriva and Gassner [68], the
connection between the SBP property and DSEMs, which forms the crux of this thesis, was
first made explicit in a 2013 paper by Gassner [69], who recognized that the matrix operators
employed within DG methods based on collocated Legendre–Gauss–Lobatto quadrature are,
in fact, SBP operators. In the same work, Gassner exploited this equivalence in order to
construct discretely conservative and nonlinearly stable DSEMs for Burgers’ equation by
way of a skew-symmetric split formulation resulting from the discretization of a judiciously
chosen linear combination of analytically equivalent but numerically distinct forms of the
PDE (see, for example, Pirozolli [70] or Fisher [71]). Again inspired by developments in SBP
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finite-difference methods [72, 73], Kopriva and Gassner used a similar splitting to obtain
energy-stable tensor-product DSEMs for variable-coefficient advection problems on curvilinear
meshes [74]. Gassner would also use this approach to construct a kinetic-energy-preserving
DSEM for the Euler equations [75] based on a split formulation introduced for finite-difference
methods by Morinishi [76]. An important aspect of Gassner and Kopriva’s approach is the
fact that the proofs of stability are valid despite the inexactness of the collocated quadrature
rules, which, while often advantageous from an efficiency perspective, are otherwise prone to
inducing aliasing-driven instabilities (see, for example, Kirby and Karniadakis [77]).

A generalized theoretical framework for nodal SBP operators in one dimension (encom-
passing spectral-element as well as finite-difference approximations) was presented in 2014 by
Del Rey Fernández et al. [78] based on the connection between SBP operators and quadrature
rules established in a classical finite-difference setting by Hicken and Zingg [79]. Notably,
such a framework extends the SBP approach to nodal sets which do not include one or both
endpoints of the interval, including collocated spectral-element operators on Legendre–Gauss
quadrature nodes, which are often used for the construction of efficient tensor-product DG
methods (see, for example, Black [80] and Hindenlang et al. [81]). A similar methodology was
adopted by Ranocha et al. in [82], who used such a generalized notion of the SBP property for
the analysis of one-dimensional FR methods. In 2016, Hicken et al. [83] presented a further
generalization of the SBP approach to multidimensional operators on general element types
including triangles and tetrahedra, which was used by Del Rey Fernández et al. in [84] along
with suitable discontinuous coupling procedures to obtain energy-stable and conservative
discretizations of variable-coefficient advection problems in split form on curved simplicial
meshes. While advantageous in terms of geometric flexibility relative to tensor-product
operators on quadrilaterals and hexahedra, the multidimensional SBP operators constructed
in [83, 84] and subsequent work are based on non-tensorial formulations of O(p2d) complexity,
restricting their practical use to modest polynomial degrees.

1.1.5 Entropy-stable discretizations

Although stable discretizations of certain nonlinear or variable-coefficient PDEs can be
obtained by way of a split formulation using SBP operators, the extension of such an approach
to more complex systems of conservation laws requires the use of entropy-conservative two-
point flux functions, which were proposed by Tadmor [85] in the context of first-order
and second-order finite-volume methods. These flux functions guarantee (under certain
physical admissibility criteria) that a strictly convex entropy function remains bounded
from above for all time, mimicking the well-known entropy analysis for nonlinear hyperbolic
PDEs (see, for example, Lax [86]). Tadmor’s approach was later extended to high-order
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accuracy on one-dimensional periodic domains by LeFloch et al. [87]. The modern era of
entropy-stable discretizations, however, began in 2012 when Fisher [88] combined affordable
entropy-conservative flux functions proposed by Ismail and Roe [89] with SBP operators
in order to obtain entropy-stable high-order finite-difference methods for the compressible
Euler and Navier–Stokes equations on curvilinear block-structured grids (see also Fisher and
Carpenter [90] and Fisher et al. [71]). Such a combination of SBP operators with two-point
flux functions came to be known in the entropy stability community as flux differencing, a
term not to be confused with the similarly named flux-difference splitting technique introduced
by Roe [91] decades earlier for approximate Riemann solvers.

Building on Fisher’s work in the context of finite-difference methods, entropy-stable
DSEMs for systems of conservation laws on tensor-product quadrilateral and hexahedral
elements were introduced by Carpenter et al. [92] and Gassner et al. [93], with the latter
demonstrating that a broad class of split-form and entropy-stable DSEMs (including those
in [75]) could be recovered by choosing different two-point flux functions. These schemes
are distinguished from the approach taken by Barth [94] as well as Hiltebrand and Mishra
[95] based on the work of Hughes et al. [96], wherein space-time DG schemes are formulated
in terms of the entropy variables. Unlike flux-differencing DSEMs, the latter methodology
results in discretizations which are only entropy stable under the assumption that all integrals
in the corresponding variational formulation are evaluated exactly (which is impractical, if
not impossible, for many PDEs of interest to practitioners, including the compressible Euler
and Navier–Stokes equations) and, furthermore, cannot be formulated explicitly in time due
to the dependence of the mass matrix on the solution state.

Entropy-stable DSEMs on simplicial elements using multidimensional SBP operators were
first introduced by Crean et al. [97], Chen and Shu [98], and Chan [99], and are systematically
reviewed by Chen and Shu [100]. In the context of an entropy-stable scheme, multidimensional
(i.e. non-tensor-product) SBP operators on triangles and tetrahedra require the evaluation of
entropy-conservative two-point flux functions between all pairs of quadrature nodes, rather
than simply along lines of nodes as in a tensor-product formulation. Since in the case of
the Euler and Navier–Stokes equations, the evaluation of an entropy-conservative flux is a
relatively expensive operation involving the logarithmic mean, this represents a significant
increase in computational cost relative to discretizations on quadrilaterals and hexahedra,
particularly at high polynomial degrees. Due in part to these limitations, as well as the
difficulty in constructing suitable quadrature rules, entropy-stable discretizations based on
multidimensional SBP operators rarely employ polynomial degrees greater than four or five.
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1.2 Summary of contributions

Having reviewed the relevant literature and current state of the art, we are now equipped to
summarize the main contributions of this thesis, which can be organized into efforts towards
meeting three main objectives, which are listed and discussed below.

Development of a unifying matrix analysis framework for discontinuous spectral-
element methods based on the summation-by-parts property (Chapter 3)

As discussed in [69] and [82], the stability properties of standard DG and FR methods can be
understood as a consequence of the SBP property, at least in the one-dimensional, collocated
case. However, the role of the multidimensional SBP property in the analysis of more general
DG formulations and the energy-stable FR methods introduced for simplicial meshes in
[41–43] had not been fully explored prior to the present work. We address this in the present
work by reformulating the standard DG and FR methods for curvilinear unstructured grids
in terms of a common set of matrix operators on the reference element and demonstrating
that, under certain conditions, they can be unified as SBP schemes within a more general
algebraic framework. As a result of this unification, the existing equivalences between the
DG and FR methods established in [44–47] are reinterpreted from the perspective of the
SBP property. Furthermore, we demonstrate algebraically that the resulting schemes are
locally (i.e. element-wise) and globally conservative as well as energy stable with respect to
suitable quadrature rules and discrete norms, recovering the analysis in [41–43] within the
context of a more general and arguably simpler theoretical framework. Besides providing a
new perspective to the analysis of standard DG and FR methods, the proposed framework
constitutes a general methodology for the formulation and analysis of DSEMs based on the
SBP property and serves as a unifying theoretical backbone for the construction of the novel
schemes which are the focus of the balance of this thesis.

Construction of tensor-product spectral-element operators with the summation-
by-parts property on the reference triangle and tetrahedron (Chapter 4)

To the author’s knowledge, all existing high-order SBP operators on triangles and tetrahedra
proposed prior to the present work are based on inherently multidimensional formulations
which are dense and lack a tensor-product structure, which results in matrix operations of
O(p2d) complexity, comparing unfavourably to the O(pd+1) complexity of tensor-product
formulations on quadrilaterals and hexahedra resulting from sum factorization. In the context
of an entropy-stable scheme, the number of required entropy-conservative flux evaluations
scales similarly, further disadvantaging the multidimensional approach as a result of the
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dense coupling between each pair of quadrature nodes. In this thesis, we describe a critical
step towards addressing such limitations through the construction of SBP operators of
arbitrary order on the reference triangle and tetrahedron which are sparse and possess
a tensor-product structure amenable to sum factorization. These operators are obtained
through a collocation approach based on the use of tensor-product Gaussian quadrature rules
in collapsed coordinates, corresponding to a rational approximation which remains exact for
polynomials on the triangle or tetrahedron. Our approach differs from existing work such
as [56] or [57] in that the Jacobian determinant of the collapsed coordinate transformation
is not entirely subsumed by a Jacobi-type quadrature weight, allowing for a cancellation of
the singular factors arising from the use of the chain rule to differentiate on the reference
element. This cancellation, along with the careful construction of facet quadrature rules
and interpolation/extrapolation operators, results in sparse tensor-product operators of any
order which satisfy the SBP property on the reference triangle or tetrahedron, and are
therefore suitable for the construction of efficient energy-stable and entropy-stable schemes
on curvilinear unstructured simplicial meshes.

Development of efficient energy- and entropy-stable tensor-product discontinuous
spectral-element methods on curved triangles and tetrahedra (Chapters 5 to 7)

Using the proposed tensor-product SBP operators within split-form and flux-differencing
DSEM formulations built upon the generalized framework described above, we construct
discretizations on curvilinear triangular and tetrahedral unstructured grids which are free-
stream preserving, conservative, as well as energy stable for the linear advection equation or
entropy stable for nonlinear hyperbolic systems of conservation laws. Although a collocated
nodal formulation can be constructed using the proposed tensor-product operators, our main
focus is on a modal approach based on a projection onto a particular orthonormal polynomial
basis on the reference triangle or tetrahedron which is separable with respect to the collapsed
coordinate system. This projection onto a standard total-degree polynomial space on the
reference element alleviates the time step restriction associated with the singularity of the
collapsed coordinate transformation while retaining the advantages of the proposed tensor-
product operators for nodal operations such as differentiation and interpolation/extrapolation.
While the use of curved elements within a modal formulation results in a dense local mass
matrix for each element, which is unfavourable in the context of explicit time integration,
the inversion of such a matrix is avoided in this work through the use of a weight-adjusted
approximation from Chan et al. [101], which results in the overall cost of evaluating the time
derivative on each element scaling as O(pd+1), with optimal O(pd) storage requirements.

The proposed energy-stable and entropy-stable schemes are implemented within a flexible
open-source PDE solver written in the Julia programming language [102], for which the
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software design closely parallels the unified framework described in this thesis. We present
numerical experiments involving the solution of the linear advection and compressible Euler
equations on curved triangular and tetrahedral meshes using the proposed energy-stable and
entropy-stable DSEM formulations using tensor-product SBP operators as well as those using
multidimensional SBP operators based on symmetric quadrature rules. These experiments
indicate that for a given mesh and polynomial degree, the proposed tensor-product approach is
very similar in accuracy to a comparable multidimensional formulation, and that the spectral
radius of the semi-discrete advection operator, which dictates the maximum stable time step
for explicit schemes, is similar for both approaches when a weight-adjusted modal formulation
is used. Furthermore, the proposed approach is shown to result in highly robust schemes for
challenging nonlinear problems characteristic of under-resolved turbulence. We also provide
estimates of the computational expense of such formulations in terms of operation count as
well as the required number of entropy-conservative two-point flux evaluations, which suggest
that the proposed schemes have the potential for significantly improved efficiency at high
polynomial degrees relative to existing provably stable formulations on simplicial elements.



Chapter 2

Mathematical preliminaries

The purpose of this chapter is to present some important mathematical notation and definitions
used throughout the remainder of this thesis and to review the essential concepts which are
required for one to grasp the contributions therein. Portions of this section are adapted from
Papers I and IV.

2.1 Notation

In this thesis, mathematical symbols are generally defined as they appear, where we employ
the following conventions throughout.

• Single underlines are used to denote vectors (treated as column matrices), whereas double
underlines denote matrices. Symbols in bold are used specifically to denote Cartesian
(i.e. spatial) vectors, for which we employ the usual dot product x ·y := x1y1 + · · ·+xdyd
and Euclidean norm ‖x‖2 := x · x.

• The symbol ∇ is used to denote componentwise differentiation with respect to either
type of vector, for example, as ∇x := [∂/∂x1 , . . . , ∂/∂xd ]T or ∇U := [∂/∂U1 , . . . , ∂/∂Ud ]T.

• The symbols R, R+, R+
0 , N, N0, and Sd−1 are used, respectively, to denote the real

numbers, the positive real numbers, the non-negative real numbers, the natural numbers
(excluding zero), the natural numbers including zero, and the unit (d− 1)-sphere given
by Sd−1 := {x ∈ Rd : ‖x‖ = 1}.

• The symbols 0(N) and 1(N) are reserved for vectors of length N containing all zeros
and all ones, respectively, and I (N) denotes the N by N identity matrix. The symbol
0(M×N) likewise denotes an M by N matrix of all zeros.

• A matrix A ∈ RN×N is symmetric positive semidefinite (SPSD) if it is symmetric (i.e.
AT = A) and satisfies vTA v ≥ 0 for all v ∈ RN . Such a matrix is symmetric positive
definite (SPD) if it is symmetric and satisfies vTA v > 0 for all v ∈ RN \ {0(N)}.

12
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• The notation {1 : N} is used as shorthand for the index set {1, 2, . . . , N}. Given a
set X , we abuse the notation {x(i)}i∈{1:N} ⊂ X to denote a sequence of N elements
satisfying x(i) ∈ X , where such elements are ordered and not necessarily distinct.

• Given a bounded domain Ω ⊂ Rd, we use ∂Ω to denote its boundary and Ω̄ := Ω ∪ ∂Ω
to denote its closure; the interior of a closed domain Ω is then given by Ω̊ := Ω \ ∂Ω.

2.2 Hyperbolic conservation laws

We are interested in systems of conservation laws governing the evolution of Nc conservative
variables given by U(x, t) ∈ Υ ⊂ RNc on the spatial domain Ω ⊂ Rd over the time interval
(0, T ) ⊂ R+

0 , where Υ denotes the set of admissible solution states. Such PDEs can be
expressed in the general form

∂U(x, t)
∂t

+
d∑

m=1

∂Fm(U(x, t))
∂xm

= 0(Nc), ∀ (x, t) ∈ Ω× (0, T ), (2.1a)

U(x, 0) = U0(x), ∀x ∈ Ω, (2.1b)

subject to appropriate boundary conditions, where Fm(U(x, t)) ∈ RNc denotes the Cartesian
flux component in the xm direction, and U0(x) ∈ Υ denotes the initial data. For convenience,
we define the flux in any direction n ∈ Sd−1 for an arbitrary solution state U ∈ Υ as

F (U,n) :=
d∑

m=1
nmFm(U). (2.2)

A system of conservation laws in the form of (2.1) is then called hyperbolic if the flux Jacobian

∇UF (U,n) :=
[
∇UF1(U,n), . . . ,∇UFNc(U,n)

]T
(2.3)

is diagonalizable with all real eigenvalues for all states U ∈ Υ and all directions n ∈ Sd−1.
We are specifically interested in hyperbolic systems of conservation laws endowed with an
entropy function and corresponding entropy flux, which are defined as follows.

Definition 2.1. The functions S : Υ → R and F : Υ → Rd are, respectively, an entropy
function and entropy flux if S is a strictly convex function (i.e. its Hessian is SPD) satisfying

(
∇UFm(U)

)T
=
(
∇US(U)

)T(
∇UFm(U)

)
, ∀U ∈ Υ, ∀m ∈ {1 : d}, (2.4)

where ∇US(U),∇UFm(U) ∈ RNc denote the gradients of the entropy function and entropy
flux components with respect to the conservative variables, and ∇UFm(U) ∈ RNc×Nc denotes
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the Jacobian of the mth Cartesian flux component, which is defined similarly to (2.3).

The entries of the vector W(U) := ∇US(U) are referred to as the entropy variables, where
the mappingW has an inverse given by U due to the strict convexity of S over the admissible
set Υ. As described by Friedrichs and Lax [103], the existence of an entropy–entropy flux
pair in the sense of Definition 2.1 implies that any classical (i.e. continuously differentiable)
solution to (2.1) satisfies an auxiliary conservation law of the form

∂S(U(x, t))
∂t

+∇x ·F(U(x, t)) = 0, ∀ (x, t) ∈ Ω× (0, T ). (2.5)

Integrating (2.5) over the spatial domain and using the divergence theorem then results in

d
dt

∫
Ω
S(U(x, t)) dx = −

∫
∂Ω

F(U(x, t)) · n(x) ds (2.6)

=
∫
∂Ω

(
Ψ
(
W(U(x, t))

)
· n(x)−

(
W(U(x, t))

)T
F (U(x, t),n(x))

)
ds,

where n(x) ∈ Sd−1 denotes the outward unit normal to ∂Ω, and the components of the flux
potential Ψ (W ) ∈ Rd are given by

Ψm(W ) := WTFm(U(W ))−Fm(U(W )). (2.7)

We are, however, often interested in weak solutions, which satisfy (2.1) in the sense of
distributions and can therefore be discontinuous, describing phenomena such as shock waves.
Replacing (2.6) with an entropy inequality of the form

d
dt

∫
Ω
S(U(x, t)) dx ≤

∫
∂Ω

(
Ψ
(
W(U(x, t))

)
· n(x)

−
(
W(U(x, t))

)T
F (U(x, t),n(x))

)
ds

(2.8)

then provides an admissibility criterion for physically relevant weak solutions (see, for example,
Kružkov [104] or Lax [105]). Provided that U(x, t) remains within Υ and that the boundary
conditions are imposed correctly, it can be shown (see, for example, Dafermos [106]) that
(2.8) implies a bound on the solution itself due to the strict convexity of the entropy function.

Remark 2.1. The requirement for a strictly convex entropy function in Definition 2.1 is
consistent with the mathematical literature. However, such a convention is opposite that
used in physics, wherein the Clausius–Duhem statement of the second law of thermodynamics
can be expressed in the form of (2.8) with the direction of the inequality reversed.
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2.3 Discontinuous spectral-element methods

In this section, we will review the essential components of discontinuous spectral-element
formulations on general curvilinear unstructured grids, with the classical DG and FR methods
serving as representative examples within such a class of methods.

2.3.1 Mesh and coordinate transformation

The first step in constructing a continuous or discontinuous spectral-element discretization
of the conservation law in (2.1) is to subdivide the spatial domain Ω into a mesh or grid of
characteristic element size h > 0, which consists of a collection {Ω(κ)}κ∈{1:Ne} of Ne closed,
bounded, and connected elements Ω(κ) ⊂ Ω with nonempty interiors, satisfying

Ne⋃
κ=1

Ω(κ) = Ω̄ and Ω̊(κ) ∩ Ω̊(ν) = ∅, ∀κ 6= ν. (2.9)

In this work, we assume that each element is the image of a polytopal (i.e. polygonal in two
dimensions or polyhedral in three dimensions) reference element denoted by Ω̂ ⊂ Rd under a
smooth, time-invariant mapping X(κ) : Ω̂→ Ω(κ). Denoting the Jacobian of the mapping as

J (κ)(ξ) :=
[
∇ξX1(ξ), . . . ,∇ξXd(ξ)

]T
(2.10)

and its determinant as J (κ)(ξ) := det(J (κ)(ξ)), we assume that the transformation from
reference to physical coordinates is bijective and orientation preserving, satisfying

J (κ)(ξ) > 0, ∀ ξ ∈ Ω̂. (2.11)

The adjugate of the Jacobian is then given by G(κ)(ξ) := J (κ)(ξ)(J (κ)(ξ))−1, with entries
(often referred to as the metric terms in the literature) satisfying the metric identities

d∑
l=1

∂G
(κ)
lm (ξ)
∂ξl

= 0, ∀ ξ ∈ Ω̂, ∀m ∈ {1 : d}, (2.12)

which can be used to express (2.1a) in conservation form on the reference element (see, for
example, Pulliam and Zingg [107, Section 4.2] or Kopriva [108, Section 6.2]) as

J (κ)(ξ)∂U(X(κ)(ξ), t)
∂t

+
d∑
l=1

∂

∂ξl

 d∑
m=1

G
(κ)
lm (ξ)Fm(U(X(κ)(ξ), t))

 = 0(Nc). (2.13)
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Since the reference element is a polytope, we can partition its boundary into a Nf flat facets
Γ̂(ζ) ⊂ ∂Ω̂ with disjoint interiors and (constant) outward unit normal vectors denoted by
n̂(ζ) ∈ Sd−1. Defining J (κ,ζ)(ξ) := ‖G(κ)(ξ)Tn̂(ζ)‖, the outward unit normal n(κ,ζ)(x) ∈ Sd−1

to the facet Γ(κ,ζ) ⊂ ∂Ω(κ) which is the image of Γ̂(ζ) under the mapping then satisfies a
relation known in the continuum mechanics literature as Nanson’s formula,

J (κ,ζ)(ξ)n(κ,ζ)(X(κ)(ξ)) = G(κ)(ξ)Tn̂(ζ), ∀ ξ ∈ Ω̂, (2.14)

for which derivations can be found in standard texts such as Gurtin et al. [109, Section 8.1].

2.3.2 Polynomial approximation spaces

Standard DG and FR methods are based on the approximation of each component of the
transformed numerical solution in (2.13) within a polynomial space of finite dimension, for
which the natural choice depends on the geometry of the reference element. For example, on
the triangle or tetrahedron, one typically considers the total-degree polynomial space

Pp(Ω̂) := span
{

Ω̂ 3 ξ 7→ ξα1
1 · · · ξ

αd
d : α ∈ P(p)

}
, (2.15)

where we define the multi-index set P(p) := {α ∈ Nd
0 : |α| ≤ p} with |α| := α1 + · · · + αd.

On the quadrilateral or hexahedron, the natural choice is the tensor-product polynomial space

Qp(Ω̂) := span
{

Ω̂ 3 ξ 7→ ξα1
1 · · · ξ

αd
d : 0 ≤ αl ≤ p, ∀ l ∈ {1 : d}

}
. (2.16)

For generality, we use Vp(Ω̂) to denote a generic polynomial space on the reference element,
and we define the corresponding trace space on a given facet Γ̂(ζ) ⊂ ∂Ω̂ as

Vp(Γ̂(ζ)) :=
{
V |Γ̂(ζ) : V ∈ Vp(Ω̂)

}
, (2.17)

where the specific cases of Pp(Γ̂(ζ)) and Qp(Γ̂(ζ)) are defined in an analogous manner. The
dimension of the approximation space is given by Np := dim(Vp(Ω̂)), where we have

dim
(
Pp(Ω̂)

)
=
(
p+ d

d

)
, dim

(
Qp(Ω̂)

)
=
(
p+ 1

)d
, (2.18)

for the total-degree and tensor-product polynomial spaces in (2.15) and (2.16), respectively.
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2.3.3 Discontinuous Galerkin formulation

A weak formulation of (2.1) can be derived on the reference element either by integrating
by parts against a smooth test function on the physical element and performing a change of
variables within each of the resulting integrals, or by integrating the transformed conservation
law in (2.13) by parts against a smooth test function on the reference element and using
(2.14) on the boundary. In either case, we obtain a weak formulation given by

∫
Ω̂
V (ξ)J (κ)(ξ)∂U(X(κ)(ξ), t)

∂t
dξ =

d∑
l=1

∫
Ω̂

∂φ(i)(ξ)
∂ξl

d∑
m=1

G
(κ)
lm (ξ)Fm(U(X(κ)(ξ), t)) dξ

−
Nf∑
ζ=1

∫
Γ̂(ζ)

V (ξ)J (κ,ζ)(ξ)
d∑

m=1
Fm(U(X(κ)(ξ), t))n(κ,ζ)

m (X(κ)(ξ)) dŝ. (2.19)

To obtain a DG approximation of (2.19), we then approximate each solution variable in
space in terms of a basis {φ(i)}i∈{1:Np} for the generic polynomial space Vp(Ω̂), resulting in
an expansion of the form

Ue(X(κ)(ξ), t) ≈ U (h,κ)
e (ξ, t) :=

Np∑
i=1

ũ
(h,κ,e)
i (t)φ(i)(ξ). (2.20)

Considering test functions belonging to the same space as the solution variables and noting
that it is sufficient to test with each basis function due to the linearity of each term in (2.19)
with respect to the test function, we obtain a DG formulation given by

∫
Ω̂
φ(i)(ξ)J (κ)(ξ)∂U

(h,κ)(ξ, t)
∂t

dξ =
d∑
l=1

∫
Ω̂

∂φ(i)(ξ)
∂ξl

d∑
m=1

G
(κ)
lm (ξ)Fm(U (h,κ)(ξ, t)) dξ

−
Nf∑
ζ=1

∫
Γ̂(ζ)

φ(i)(ξ)J (κ,ζ)(ξ)F (∗,κ,ζ)(ξ, t) dŝ, ∀ i ∈ {1 : Np},
(2.21)

where the numerical flux function F ∗ : Υ × Υ × Sd−1 → RNc has been used to resolve the
discontinuity in the global numerical solution at each facet, on which we define

F (∗,κ,ζ)(ξ, t) := F ∗(U (h,κ)(ξ, t), U (h,κ,+)(ξ, t), n(κ,ζ)(X(κ)(ξ))), (2.22)

with the exterior solution state given by U (h,κ,+)(ξ, t) ∈ Υ. The numerical flux is typically
assumed to satisfy the conservation and consistency properties given, respectively, by

F ∗(U−, U+,n) = −F ∗(U+, U−,−n), ∀U−, U+ ∈ Υ, ∀n ∈ Sd−1, (2.23a)
F ∗(U,U,n) = F (U,n), ∀U ∈ Υ, ∀n ∈ Sd−1. (2.23b)
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The initial condition for a DG scheme is typically imposed through a Galerkin projection
with respect to the L2 inner product on the physical element; expressing such a projection in
reference coordinates, we therefore obtain U (h,κ)(·, 0) by solving

∫
Ω̂
φ(i)(ξ)J (κ)(ξ)U (h,κ)(ξ, 0) dξ =

∫
Ω̂
φ(i)J (κ)(ξ)U0(X(κ)(ξ)) dξ, ∀ i ∈ {1 : Np}. (2.24)

Inserting the expansion (2.20) into (2.21) and (2.24) then results in a system of Np equations
which must be solved in order to obtain the expansion coefficients for each component of the
time derivative and initial condition, producing a system of ordinary differential equations
(ODEs) to which a standard implicit or explicit time-marching method can be applied.

2.3.4 Flux reconstruction formulation

Unlike the DG method, the FR approach involves the discretization of the strong form
of (2.13) rather than the weak form, and traditionally employs a nodal collocation-based
approximation rather than a Galerkin approach. Expanding each component of the numerical
solution using a Lagrange basis {`(i)}i∈{1:Np} for the polynomial space Vp(Ω̂) as

Ue(X(κ)(ξ), t) ≈ U (h,κ)
e (ξ, t) :=

Np∑
i=1

u
(h,κ,e)
i (t)`(i)(ξ), (2.25)

where such a basis satisfies the cardinal property `(i)(ξ(j)) = δij on the nodes {ξ(i)}i∈{1:Np} ⊂ Ω̂
such that u(h,κ,e)

i (t) = U (h,κ)
e (ξ(i), t), we can define a discontinuous flux approximation as

F̂
(κ,l)
D (ξ, t) :=

Np∑
i=1

d∑
m=1

G
(κ)
lm (ξ(i))Fm(U (h,κ)(ξ(i), t))`(i)(ξ). (2.26)

The central idea of the FR method as proposed by Huynh [39] is to reconstruct a continuous
flux through the addition of a correction flux to the discontinuous flux in (2.26), which is
defined based on the difference between the scaled numerical flux and the normal component
of the discontinuous flux at the nodes {ξ(ζ,i)}

i∈{1:N(ζ)
qf
} ⊂ Γ̂(ζ) on each facet as

F̂
(κ,l)
C (ξ, t) :=

Nf∑
ζ=1

N
(ζ)
qf∑
i=1

(
J (κ,ζ)(ξ(ζ,i))F (∗,κ,ζ)(ξ(ζ,i), t)−

d∑
m=1

n̂(ζ)
m F̂

(κ,m)
D (ξ(ζ,i), t)

)
G

(ζ,i)
l (ξ), (2.27)

where the numerical flux is evaluated as in (2.22) and G(ζ,i) : Ω̂→ Rd denote vector-valued
correction functions satisfying

∇ξ ·G(ζ,i) ∈ Vp(Ω̂), and G(ζ,i)(ξ(η,j)) · n̂(η) = δζηδij. (2.28)
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Such conditions are typically supplemented with additional constraints in order to ensure
energy stability in a particular norm, a topic which we will consider in Chapter 3 within the
context of the SBP property. Substituting the approximation in (2.25) into (2.13) and using
the above correction procedure to approximate the transformed flux components, we obtain
a semi-discrete formulation given for i ∈ {1 : Nq} by

dU (h,κ)(ξ(i), t)
dt = − 1

J (κ)(ξ(i))

d∑
l=1

∂(F̂ (κ,l)
D + F̂

(κ,l)
C )

∂ξl
(ξ(i), t), (2.29)

where the initial condition is obtained as U (h,κ)(ξ(i), 0) = U0(X(κ)(ξ(i))). The nodal values
can then be advanced in time using a standard time-marching method for systems of ODEs.

2.4 Orthogonal polynomials and Gaussian quadrature rules

The fundamental building blocks used for constructing the novel DSEMs described in this
work are Jacobi and Legendre polynomials as well as their associated Gaussian quadrature
rules and interpolants, the basic properties of which we will review here. The normalized
Jacobi polynomials are denoted by P (a,b)

i ∈ Pi([−1, 1]) and satisfy
∫ 1

−1
P

(a,b)
i (ξ)P (a,b)

j (ξ)(1− ξ)a(1 + ξ)b dξ = δij, ∀ a, b > −1, (2.30)

where the case of (a, b) = (0, 0) corresponds to the normalized Legendre polynomials. The
Jacobi polynomials can be constructed through recurrence relations, as shown, for example,
by Hesthaven and Warburton [11, Appendix A]. For a given non-negative integer q, the
Gaussian quadrature rules corresponding to a Jacobi weight with exponents a and b have
nodes {ξ(i)}i∈{0:q} ⊂ [−1, 1] given by the q + 1 solutions to a polynomial equation. Such
equations are given by

Gauss: P
(a,b)
q+1 (ξ) = 0, (2.31a)

Gauss–Radau: (1 + ξ)P (a,b+1)
q (ξ) = 0, (2.31b)

Gauss–Lobatto: (1− ξ2)P (a+1,b+1)
q−1 (ξ) = 0, (2.31c)

where the Gauss, Gauss–Radau, and Gauss–Lobatto families of quadrature rules include zero,
one, and two endpoints of the interval, respectively, and we note that Gauss–Lobatto rules
require q ≥ 1 due to the requirement for at least two nodes.

Remark 2.2. Here, we define Gauss–Radau quadrature rules including a node at the left
endpoint, with those including the right endpoint obtained by flipping the sign of ξ in (2.31b).
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The Lagrange polynomials {`(i)}i∈{0:q} associated with the quadrature nodes {ξ(i)}i∈{0:q}

constitute a basis for Pq([−1, 1]) satisfying the cardinal property `(i)(ξ(j)) = δij and are given
explicitly as

`(i)(ξ) :=
∏

j∈{0:q}\{i}

ξ − ξ(j)

ξ(i) − ξ(j) . (2.32)

The corresponding Gaussian quadrature weights {ω(i)}i∈{0:q} can then be expressed as

ω(i) :=
∫ 1

−1
`(i)(ξ)(1− ξ)a(1 + ξ)b dξ, (2.33)

where alternative expressions for such weights can be found, for example, in references such
as Karniadakis and Sherwin [110, Appendix B]. The resulting quadrature rule satisfies

q∑
i=0

V (ξ(i))ω(i) =
∫ 1

−1
V (ξ)(1− ξ)a(1 + ξ)b dξ, ∀V ∈ Pτ (a,b)([−1, 1]), (2.34)

where τ (a,b) = 2q + 1 for Gauss nodes, τ (a,b) = 2q for Gauss–Radau nodes, and τ (a,b) = 2q − 1
for Lobatto nodes. In the case of (a, b) = (0, 0), we recover the familiar Legendre–Gauss
(LG), Legendre–Gauss–Radau (LGR), Legendre–Gauss–Lobatto (LGL) quadrature rules for
integration with respect to the unit weight. Gauss, Gauss–Radau, and Gauss–Lobatto
quadrature rules for which (a, b) 6= (0, 0) will be referred to in this thesis as those of
Jacobi–Gauss (JG), Jacobi–Gauss–Radau (JGR), and Jacobi–Gauss–Lobatto (JGR) type,
respectively.

2.5 Summation-by-parts operators

In this section, we will review the generalized definitions presented in [78] and [111] for
one-dimensional and multidimensional SBP operators, respectively. We will use the term
SBP operator to denote operators adhering to either of such definitions, which are sometimes
denoted as generalized SBP operators to distinguish them from the classical finite-difference
SBP operators introduced in [63]. Due to the focus of this thesis on DSEMs rather than
finite-difference methods, this is not expected to cause confusion.

2.5.1 One-dimensional summation-by-parts operators

The following generalized definition of a nodal SBP operator in one dimension was proposed
in [78], extending earlier notions of SBP operators used in the finite-difference community
to encompass element-type operators used in DSEMs, including those based on quadrature
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rules not including one or both endpoints of the interval.

Definition 2.2. Let {x(i)}i∈{1:Nq} ⊂ [xL, xR] denote a set of Nq distinct nodes, on which the
functions U, V : [xL, xR]→ R can be evaluated as

u :=
[
U(x(1)), . . . , U(x(Nq))

]T
and v :=

[
V (x(1)), . . . , V (x(Nq))

]T
. (2.35)

A matrix D ∈ RNq×Nq approximating d/dx is an SBP operator of degree q if it satisfies

Dv =
[
(dV/dx)(x(1)), . . . , (dV/dx)(x(Nq))

]T
, ∀V ∈ Pq([xL, xR]), (2.36)

and may be decomposed as D = W −1Q such that W ∈ RNq×Nq is SPD and Q ∈ RNq×Nq

satisfies the SBP property Q +QT = E , where E ∈ RNq×Nq satisfies

uTEv = U(xR)V (xR)− U(xL)V (xL), ∀U, V ∈ Pq([xL, xR]). (2.37)

Remark 2.3. Polynomial exactness conditions such as (2.36) imply that any SBP operator
of degree q is, by definition, also an SBP operator of any non-negative integer degree p < q.
Where such ambiguity arises, the degree q of an SBP operator is taken to refer uniquely to
the maximum integer value for which such a condition holds.

The SBP property mimics the integration-by-parts property of the first derivative d/dx,
which is given for continuously differentiable functions U and V as

∫ xR

xL
U(x)dV (x)

dx dx

≈

+
∫ xR

xL

dU(x)
dx V (x) dx

≈

= U(xR)V (xR)− U(xL)V (xL)

≈

.

uTQv + uTQTv = uTEv

(2.38)

We refer to any SBP operator for which the associated matrix W is diagonal as a diagonal-
norm SBP operator, where W is denoted as the norm matrix in the finite-difference literature
and as the mass matrix in the context of spectral and finite-element methods. It was shown
in [78, Section 4.1] that for any diagonal-norm SBP operator of degree q, the corresponding
quadrature rule with positive weights {ω(i)}i∈{1:Nq} ⊂ R+ given by ω(i) := Wii satisfies

Nq∑
i=1

V (x(i))ω(i) =
∫ xR

xL
V (x) dx, ∀V ∈ P2q−1([xL, xR]). (2.39)

Remark 2.4. We devote particular attention to diagonal-norm SBP operators in this thesis,
since the matrix W must be diagonal for the construction of provably stable schemes on
curvilinear meshes and for nonlinear PDEs, which are the focus of Chapters 5 and 6.
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2.5.2 Multidimensional summation-by-parts operators

We now present the following definition of a nodal SBP operator from [83], which extends
Definition 2.2 to the multidimensional setting.

Definition 2.3. Let Ω̂ ⊂ Rd denote a closed, bounded, and connected reference domain on
which we define a set of Nq distinct nodes {ξ(i)}i∈{1:Nq} ⊂ Ω̂, and let

u :=
[
U(ξ(1)), . . . , U(ξ(Nq))

]T
and v :=

[
V (ξ(1)), . . . , V (ξ(Nq))

]T
(2.40)

contain the nodal values of functions U, V : Ω̂→ R. A matrix D(l) ∈ RNq×Nq approximating
∂/∂ξl is then a multidimensional SBP operator of degree q if it satisfies

D(l)v =
[
(∂V/∂ξl)(ξ(1)), . . . , (∂V/∂ξl)(ξ(Nq))

]T
, ∀V ∈ Pq(Ω̂), (2.41)

and may be decomposed as D(l) = W −1Q(l) such that W ∈ RNq×Nq is SPD and Q(l) ∈ RNq×Nq

satisfies the SBP property Q(l) + (Q(l))T = E (l), where E (l) ∈ RNq×Nq satisfies

uTE (l)v =
∫
∂Ω̂
U(ξ)V (ξ)n̂l(ξ) dŝ, ∀U, V ∈ Pq(Ω̂), (2.42)

where n̂ : ∂Ω̂→ Sd−1 denotes the outward unit normal vector to Ω̂.

As in the one-dimensional case, the multidimensional SBP property mimics the integration-
by-parts relation given for continuously differentiable functions U and V as

∫
Ω̂
U(ξ)∂V (ξ)

∂ξl
dξ

≈

+
∫

Ω̂

∂U(ξ)
∂ξl

V (ξ) dξ

≈

=
∫
∂Ω̂
U(ξ)V (ξ)n̂l(ξ) dŝ

≈

,

uTQ(l)v + uT
(
Q(l)

)T
v = uTE (l)v

(2.43)

and is equivalent to the decomposition Q(l) = S (l) + 1
2E

(l), where S (l) is skew-symmetric and
E (l) is a symmetric matrix satisfying (2.42). In the case of a diagonal-norm multidimensional
SBP operator of degree q, the corresponding quadrature rule satisfies

Nq∑
i=1

V (ξ(i))ω(i) =
∫

Ω̂
V (ξ) dξ, ∀V ∈ Pτ (Ω̂), (2.44)

where, similarly to (2.39), it was shown in [83, Theorem 3.2] that τ ≥ 2q − 1.
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2.5.3 Decomposition of the boundary operators

Assuming as in Section 2.3.1 that the reference element is a polytope, we introduce N (ζ)
qf

distinct nodes {ξ(ζ,i)}
i∈{1:N(ζ)

qf
} ⊂ Γ̂(ζ) on each facet Γ̂(ζ) ⊂ ∂Ω̂. As in [84, Section 3], we then

restrict our attention to the class of SBP operators for which the boundary matrices in (2.42)
are constructed as

E (l) :=
Nf∑
ζ=1

n̂
(ζ)
l

(
R(ζ)

)T
B (ζ)R(ζ), (2.45)

in terms of the SPSD facet mass matrices B (ζ) ∈ RNq×Nq as well as interpolation/extrapolation
operators R(ζ) ∈ RN

(ζ)
qf
×Nq satisfying

R(ζ)v =
[
V (ξ(ζ,1)), . . . , V (ξ(ζ,N(ζ)

qf
))
]T
, ∀V ∈ Pq(Ω̂). (2.46)

As a special case of (2.45), we note that E (l) can be made diagonal by constructing SBP
operators for which the facet quadrature nodes all form subsets of the volume quadrature
nodes, wherein R(ζ) simply selects boundary values from nodal vectors. Such SBP operators,
denoted here as diagonal-E operators, are analogous to those on one-dimensional nodal sets
including both endpoints, and are constructed on simplicial elements, for example, by Chen
and Shu [98], Del Rey Fernández et al. [112], and Worku and Zingg [113].



Chapter 3

Unifying framework for discontinuous
spectral-element methods based on the
summation-by-parts property

In this chapter, which is based on the content of Paper I, we introduce the fundamental
components of the proposed discontinuous spectral-element framework based on the SBP
property within the context of standard DG and FR methods. In doing so, we aim to
provide new insights regarding the existing schemes through their interpretation as SBP
discretizations, as well as to introduce the principles and notation which will be used later in
this thesis to construct provably stable schemes for nonlinear problems and curved meshes.

3.1 Reference operator matrices

In order to obtain an algebraic DSEM formulation amenable to analysis based on the SBP
property, we must first define the matrix operators which constitute the discretization on the
reference element. Letting {ξ(i)}i∈{1:Nq} ⊂ Ω̂ and {ω(i)}i∈{1:Nq} ⊂ R+ denote the nodes and
weights, respectively, for a volume quadrature rule on the reference element of the form

Nq∑
i=1

V (ξ(i))ω(i) ≈
∫

Ω̂
V (ξ) dξ, (3.1)

and letting {ξ(ζ,i)}
i∈{1:N(ζ)

qf
} ⊂ Γ̂(ζ) and {ω(ζ,i)}

i∈{1:N(ζ)
qf
} ⊂ R+

0 define facet quadrature rules as

N
(ζ)
qf∑
i=1

V (ξ(ζ,i))ω(ζ,i) ≈
∫

Γ̂(ζ)
V (ξ) dŝ, (3.2)

24
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we construct the diagonal matrices

W :=


ω(1)

. . .
ω(Nq)

, B (ζ) :=


ω(ζ,1)

. . .

ω(ζ,N(ζ)
qf

)

. (3.3)

Defining the generalized Vandermonde matrix corresponding to an arbitrary (i.e. nodal or
modal) basis {φ(i)}i∈{1:Np} for the generic polynomial space Vp(Ω̂) as

V :=


φ(1)(ξ(1)) · · · φ(Np)(ξ(1))

... . . . ...
φ(1)(ξ(Nq)) · · · φ(Np)(ξ(Nq))

, (3.4)

we require that differentiation and interpolation/extrapolation operators exist on the chosen
nodal sets which satisfy the following assumption.

Assumption 3.1. The basis {φ(i)}i∈{1:Np} spans a polynomial space Vp(Ω̂) which is closed
under partial differentiation, and the rank of the corresponding Vandermonde matrix V in
(3.4) is equal to the dimension Np of such a space (i.e. it is of full column rank). Moreover,
there exist matrices D(l) ∈ RNq×Nq and R(ζ) ∈ RN

(ζ)
qf
×Nq satisfying

D(l)V =


(∂φ(1)/∂ξl)(ξ(1)) · · · (∂φ(Np)/∂ξl)(ξ(1))

... . . . ...
(∂φ(1)/∂ξl)(ξ(Nq)) · · · (∂φ(N(ζ)

qf
)/∂ξl)(ξ(Nq))

, ∀ l ∈ {1 : d}, (3.5a)

R(ζ)V =


φ(1)(ξ(ζ,1)) · · · φ(Np)(ξ(ζ,1))

... . . . ...
φ(1)(ξ(ζ,N(ζ)

qf
)) · · · φ(Np)(ξ(ζ,N(ζ)

qf
))

, ∀ ζ ∈ {1 : Nf}, (3.5b)

as well as the SBP property given for boundary operators in the form of (2.45) by

WD(l) +
(
D(l)

)T
W =

Nf∑
ζ=1

n̂
(ζ)
l

(
R(ζ)

)T
B (ζ)R(ζ), ∀ l ∈ {1 : d}, (3.6)

where the matrices W ∈ RNq×Nq and B (ζ) ∈ RN
(ζ)
qf
×N(ζ)

qf are SPD and SPSD, respectively.

Remark 3.1. Polynomial spaces which are closed under partial differentiation are called
downward closed (see, for example, Cohen and Migliorati [114]) and include both Pp(Ω̂) and
Qp(Ω̂). Since one can differentiate any monomial of the form πα(ξ) := ξα1

1 · · · ξαdd belonging
to a downward-closed polynomial space αl times with respect to each coordinate ξl while
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remaining within such a space, it follows that such spaces must always include constants.

3.1.1 Collocation-based operators

As discussed, for example, by Bos [115], the distinct nodes {ξ(i)}i∈{1:Nq} constitute a unisolvent
nodal set for the space Vp(Ω̂) when V is invertible, where Nq = Np provides a necessary
condition, but not a sufficient one when d ≥ 2. When the nodes are unisolvent, the matrices
in (3.5a) and (3.5b) are given uniquely by multiplying from the right by V −1 to obtain

D(l) =


(∂`(1)/∂ξl)(ξ(1)) · · · (∂`(Nq)/∂ξl)(ξ(1))

... . . . ...
(∂`(1)/∂ξl)(ξ(Nq)) · · · (∂`(Nq)/∂ξl)(ξ(Nq))

, (3.7a)

R(ζ) =


`(1)(ξ(ζ,1)) · · · `(Nq)(ξ(ζ,1))

... . . . ...
`(1)(ξ(ζ,N(ζ)

qf
)) · · · `(Nq)(ξ(ζ,N(ζ)

qf
))

, (3.7b)

where {`(i)}i∈{1:Nq} is a nodal (i.e. Lagrange) basis given by


`(1)(ξ)

...
`(Nq)(ξ)

 := V −T


φ(1)(ξ)

...
φ(Np)(ξ)

, (3.8)

which satisfies the cardinal property `(i)(ξ(j)) = δij and recovers (2.32) in the one-dimensional
case. The differentiation matrix in (3.7a) is then recognized as a collocation derivative or
interpolation derivative operator familiar in the context of spectral methods (see, for example,
[108, Section 3.5.2] or [110, Section 2.4.2]). Defining the exact nodal mass matrix as

W :=


∫

Ω̂ `
(1)(ξ)`(1)(ξ) dξ · · ·

∫
Ω̂ `

(1)(ξ)`(Nq)(ξ) dξ
... . . . ...∫

Ω̂ `
(Nq)(ξ)`(1)(ξ) dξ · · ·

∫
Ω̂ `

(Nq)(ξ)`(Nq)(ξ) dξ

, (3.9)

we then obtain the SBP property by applying integration by parts to the entries of the matrix

WD(l) =


∫

Ω̂ `
(1)(ξ)(∂`(1)/∂ξl)(ξ) dξ · · ·

∫
Ω̂ `

(1)(ξ)(∂`(Nq)/∂ξl)(ξ) dξ
... . . . ...∫

Ω̂ `
(Nq)(ξ)(∂`(1)/∂ξl)(ξ) dξ · · ·

∫
Ω̂ `

(Nq)(ξ)(∂`(Nq)/∂ξl)(ξ) dξ

, (3.10)
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which, as shown in the one-dimensional case by Carpenter and Gottlieb [67], results in

WD(l) +
(
D(l)

)T
W =


∫
∂Ω̂ `

(1)(ξ)`(1)(ξ)n̂l(ξ) dŝ · · ·
∫
∂Ω̂ `

(1)(ξ)`(Nq)(ξ)n̂l(ξ) dŝ
... . . . ...∫

∂Ω̂ `
(Nq)(ξ)`(1)(ξ)n̂l(ξ) dŝ · · ·

∫
∂Ω̂ `

(Nq)(ξ)`(Nq)(ξ)n̂l(ξ) dŝ

. (3.11)

We therefore obtain boundary operators E (l) in the form of (2.45) and, hence, an SBP
property in the form of (3.6) when

(
R(ζ)

)T
B (ζ)R(ζ) =


∫

Γ̂(ζ) `(1)(ξ)`(1)(ξ) dŝ · · ·
∫

Γ̂(ζ) `(1)(ξ)`(Nq)(ξ) dŝ
... . . . ...∫

Γ̂(ζ) `(Nq)(ξ)`(1)(ξ) dŝ · · ·
∫

Γ̂(ζ) `(Nq)(ξ)`(Nq)(ξ) dŝ

 (3.12)

holds for each facet of the reference element. Such is the case when B (ζ) is defined as in
(3.3) in terms of a facet quadrature rule which exactly integrates the product of two basis
functions, or when B (ζ) is defined analogously to (3.9) as the exact facet mass matrix, which
is generally dense and SPD. The above construction therefore establishes the existence of a
dense-norm multidimensional SBP operator on any unisolvent nodal set.

Remark 3.2. We refer the reader to Marchildon and Zingg [116] for the derivation of neces-
sary conditions for obtaining symmetrical nodal sets which are unisolvent for total-degree
polynomial spaces on triangles and tetrahedra, as well as to Chen and Babuška [117, 118],
Hesthaven [119], Hesthaven and Teng [120], Taylor et al. [121], Warburton [122], and Chan
and Warburton [123], who describe algorithms for constructing such nodal sets and bases.

3.1.2 Quadrature-based operators

While Section 3.1.1 provides a straightforward procedure for constructing SBP operators on
unisolvent nodal sets, a diagonal matrix W and, thus, a diagonal-norm SBP operator, is not
obtained unless the corresponding quadrature rule with weights given similarly to (2.33) by

ω(i) :=
∫

Ω̂
`(i)(ξ) dξ (3.13)

is exact for the product of any two of the basis functions in (3.8), in which case the cardinal
property results in the definitions given for W in (3.3) and (3.9) being equivalent. For the line
segment, quadrilateral, and hexahedron, this can be achieved, for example, by constructing
spectral collocation operators on (tensor-product) LG quadrature rules. Aside from such
special cases, however, obtaining a diagonal nodal mass matrix requires mass lumping, in
which the collocation-based operators in (3.7a) and (3.7b) are used with the diagonal mass
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matrix in (3.3) containing the interpolatory quadrature weights in (3.13). In a landmark
paper, Gassner [69] recognized that if the integration-by-parts relation in (2.43) holds under
quadrature for all U, V ∈ Vp(Ω̂), which was shown to be the case for tensor-product LGL
quadrature rules on quadrilaterals and hexahedra [68], the mass-lumped formulation satisfies
a diagonal-norm SBP property. For other element types such as triangles and tetrahedra,
however, one often requires more than Np volume quadrature nodes for integration by parts to
hold for polynomials in Vp(Ω̂), and hence constructing a diagonal-norm SBP operator requires
consideration of the general notion of a multidimensional SBP operator in Definition 2.3, which
allows for the case of Nq > Np. Unlike the matrices in (3.7a) and (3.7b), such operators are
not uniquely defined on a given set of nodes, and there are many approaches to constructing
such operators [83, 84]. To provide a concrete example of such an approach, we consider the
methodology proposed by Chan [99], which employs the quadrature-based projection matrix

P := M−1V TW, (3.14)

where W is defined as in (3.3) using positive quadrature weights and V is of full column rank,
which ensures positive-definiteness of the modal mass matrix M := V TWV . The operators

D(l) :=


(∂φ(1)/∂ξl)(ξ(1)) · · · (∂φ(Np)/∂ξl)(ξ(1))

... . . . ...
(∂φ(1)/∂ξl)(ξ(Nq)) · · · (∂φ(N(ζ)

qf
)/∂ξl)(ξ(Nq))

P , (3.15a)

R(ζ) :=


φ(1)(ξ(ζ,1)) · · · φ(Np)(ξ(ζ,1))

... . . . ...
φ(1)(ξ(ζ,N(ζ)

qf
)) · · · φ(Np)(ξ(ζ,N(ζ)

qf
))

P (3.15b)

then satisfy (3.5a) and (3.5b), respectively, since PV = I (Np), and can be shown to satisfy the
SBP property in (3.6) when the quadrature is exact for each term in (2.43) when U, V ∈ Vp(Ω̂).
We therefore have a procedure for constructing multidimensional diagonal-norm SBP operators
for general (e.g. non-collocated) choices of quadrature and basis. Such a topic will be revisited
in Chapter 4 with the aim of obtaining more efficient operators on triangles and tetrahedra.

3.2 Discontinuous spectral-element formulations

The operators constructed in Section 3.1 will now be used to obtain algebraic formulations
for the DG and FR methods described in Section 2.3. Specifically, we aim to obtain the
time derivative of the vector u(h,κ,e)(t) or ũ(h,κ,e)(t), which contains the degrees of freedom for
the local expansion in (2.20) or (2.25), in terms of the solution degrees of freedom for given
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element and (through the numerical flux) those with which such an element shares a common
interface. Such formulations also require the diagonal matrices J (κ), G(κ,l,m) ∈ RNq×Nq and
J (κ,ζ), N (κ,ζ,m) ∈ RN

(ζ)
qf
×N(ζ)

qf with entries given by

J
(κ)
ij := J (κ)(ξ(i))δij, G

(κ,l,m)
ij := G

(κ)
lm (ξ(i))δij,

J
(κ,ζ)
ij := J (κ,ζ)(ξ(ζ,i))δij, N

(κ,ζ,m)
ij := n(κ,ζ)

m (X(κ)(ξ(ζ,i)))δij,
(3.16)

which describe the geometry of each physical element, and we use the relation

u(h,κ,e)(t) = V ũ(h,κ,e)(t), (3.17)

to obtain the nodal values from the modal expansion coefficients. We note that although the
matrix P defined in (3.14) can be used to obtain a modal expansion from a vector of nodal
values, such an expansion is not guaranteed to be unique unless V is invertible, which results
in P = V −1. In such a case, the operators in (3.7) are then equal to those in (3.15).

3.2.1 Discontinuous Galerkin method

Using matrices D(l) and R(ζ) satisfying (3.5a) and (3.5b), respectively, to exactly differentiate
and interpolate/extrapolate each basis function, an algebraic formulation of the DG method
is obtained by approximating the integrals in (2.21) using W and B (ζ), resulting in

V TWJ (κ)V
dũ(h,κ,e)(t)

dt =
d∑
l=1

(
D(l)V

)T
W

d∑
m=1

G(κ,l,m)f (κ,m,e)(t)

−
Nf∑
ζ=1

(
R(ζ)V

)T
B (ζ)J (κ,ζ)f (∗,κ,ζ,e)(t).

(3.18)

In the above, we gather the conservative variables at each node as

u
(h,κ)
i (t) :=


u

(h,κ,1)
i (t)

...
u

(h,κ,Nc)
i (t)

, u
(h,κ,ζ)
i (t) :=


[R(ζ)u(h,κ,1)(t)]i

...
[R(ζ)u(h,κ,Nc)(t)]i

, (3.19)

and evaluate the physical flux and numerical flux components, respectively, as

f (κ,m,e)(t) :=


Fme(u(h,κ)

1 (t))
...

Fme(u(h,κ)
Nq (t))

 (3.20)
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and

f (∗,κ,ζ,e)(t) :=


F ∗e (u(h,κ,ζ)

1 (t), u(+,κ,ζ,e)
1 (t), n(κ,ζ)(X(κ)(ξ(ζ,1))))

...
F ∗e (u(h,κ,ζ)

N
(ζ)
qf

(t), u(+,κ,ζ,e)
N

(ζ)
qf

(t), n(κ,ζ)(X(κ)(ξ(ζ,N(ζ)
qf

))))

, (3.21)

in terms of the above nodal values and the exterior solution state u(+,κ,ζ,e)
i (t) ∈ Υ. The

projection of the initial condition in (2.24) can similarly be formulated algebraically as

V TWJ (κ)V ũ(h,κ,e)(0) = V TWJ (κ)


U0(X(κ)(ξ(1)))

...
U0(X(κ)(ξ(Nq)))

, (3.22)

where we note that both (3.18) and (3.22) require the solution of a linear system involving the
elemental mass matrix V TWJ (κ)V . Finally, in order to provide a unified analysis of nodal as
well as modal formulations, we note that the DG scheme in (3.18) can be expressed as

V TWJ (κ)V
dũ(h,κ,e)(t)

dt = V Tr(h,κ,e)(t), (3.23)

where the nodal right-hand side is given by

r(h,κ,e)(t) :=
d∑
l=1

(
D(l)

)T
W

d∑
m=1

G(κ,l,m)f (κ,m,e)(t)−
Nf∑
ζ=1

(
R(ζ)

)T
B (ζ)J (κ,ζ)f (∗,κ,ζ,e)(t). (3.24)

Remark 3.3. The formulation in (3.23) can be interpreted as a discrete projection of the
time derivative for a nodal discretization onto the chosen polynomial basis. However, for a
given choice of approximation space and quadrature, the solution for such a scheme is in fact
independent of the particular matrices D(l) and R(ζ) used in (3.24) when (3.5a) and (3.5b)
are satisfied, since, in a standard DG method, such operators are only applied to polynomial
test functions, for which discrete differentiation and interpolation/extrapolation are exact.
Nevertheless, the form of the operator and the choice of polynomial basis (which also has no
influence on the accuracy of the numerical solution in infinite precision) can have a significant
impact on the computational expense of the resulting algorithm.

3.2.2 Flux reconstruction method

Following Castonguay et al. [42] and Williams et al. [43], we define the scalar-valued correction
field associated with each vector-valued correction function as

H(ζ,i)(ξ) := ∇ξ ·G(ζ,i)(ξ), (3.25)
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and separate the divergence of the discontinuous flux in (2.26) from that of the correction
flux in (2.27) in order to rewrite the FR method in (2.29) as

dU (h,κ)(ξ(i), t)
dt = − 1

J (κ)(ξ(i))

 d∑
l=1

∂F̂
(κ,l)
D

∂ξl
(ξ(i), t)

+
Nf∑
ζ=1

N
(ζ)
qf∑
j=1

H(ζ,j)(ξ(i))
(
J (κ,ζ)(ξ(ζ,j))F (∗,κ,ζ)(ξ(ζ,j), t)−

d∑
m=1

n̂(ζ)
m F̂

(κ,m)
D (ξ(ζ,j), t)

).
(3.26)

Using the collocation-based operators D(l) and R(ζ) given in (3.7a) and (3.7b), respectively,
such a formulation can then be expressed algebraically as

du(h,κ,e)(t)
dt =−

(
J (κ)

)−1
 d∑

l=1
D(l)f̂ (κ,l,e)(t)

+
Nf∑
ζ=1

L(ζ)
(
J (κ,ζ)f (∗,κ,ζ,e)(t)−R(ζ)

d∑
l=1

n̂
(ζ)
l f̂ (κ,l,e)(t)

),
(3.27)

where the nodal values of the discontinuous flux components in (2.26) are given by

f̂ (κ,l,e)(t) :=
d∑

m=1
G(κ,l,m)f (κ,m,e)(t), (3.28)

and we define the lifting matrix in terms of the correction fields in (3.25) as

L(ζ) :=


H(ζ,1)(ξ(1)) · · · H(ζ,N(ζ)

qf
)(ξ(1))

... . . . ...
H(ζ,1)(ξ(1)) · · · H(ζ,N(ζ)

qf
)(ξ(Nq))

. (3.29)

Remark 3.4. Our analysis is based on properties of the scalar correction fields encoded within
the lifting matrices, rather than on properties of the vector-valued correction functions, where
we note that the latter do not appear directly in (3.26) nor (3.27). While energy-stable
correction fields for triangles and tetrahedra are constructed in [42, 43], the corresponding
correction functions are never explicitly constructed and thus serve only a conceptual role.

We consider a particular class of correction fields, satisfying the following assumption.

Assumption 3.2. The correction fields correspond to a lifting matrix of the form

L(ζ) :=
(
W +K

)−1(
R(ζ)

)T
B (ζ), (3.30)
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where W +K is SPD and K ∈ RNq×Nq is a symmetric matrix satisfying

KD(l) = 0(Nq×Nq), ∀ l ∈ {1 : d}, (3.31a)
K1(Nq) = 0(Nq). (3.31b)

The precise form of K generally depends on the element type and approximation space,
where we note that the case of a tensor-product polynomial space on the quadrilateral or
hexahedron was treated by Cicchino and Nadarajah [124] and is not detailed in this thesis.
For total-degree polynomial spaces Pp(Ω̂) on simplices, we present the following lemma.

Lemma 3.1. Defining the derivative operator with respect to a multi-index α ∈ Nd
0 as

Dα :=
(
D(1)

)α1 · · ·
(
D(d)

)αd
, (3.32)

in terms of the collocation derivative matrices D(l) given as (3.7a) in terms of a nodal basis
for the space Pp(Ω̂) with p ≥ 1, the correction fields given in terms of (3.30) with

K :=



c

|Ω̂|

(
Dp
)T
WDp, d = 1,

c

|Ω̂|

p∑
i=0

(
p

i

)(
D(p−i,i)

)T
WD(p−i,i), d = 2,

c

|Ω̂|

p∑
i=0

i∑
j=0

(
p

i

)(
i

j

)(
D(p−i,i−j,j)

)T
WD(p−i,i−j,j), d = 3,

(3.33)

satisfy the conditions of Assumption 3.2, where it is sufficient to take c ≥ 0 when W is SPD.

Proof. Since it is clear from the definitions in (3.33) that c ≥ 0 results in an SPSD matrix
K , such a condition is sufficient1 for W + K to be SPD, as the sum of a positive-definite
matrix and a positive-semidefinite matrix is positive definite. The property in (3.31a) then
follows from the fact that for |α| = q, applying the operator DαD(l) to any vector of nodal
values corresponds to the exact differentiation of a total-degree q polynomial interpolant a
total of p+ 1 times, which always yields the zero vector. Similarly, (3.31b) results from the
fact that Dα1(Nq) = 0(Nq), since the pth derivative of a constant is zero for any p ≥ 1.

Remark 3.5. The definitions given for K in (3.33) are such that the original VCJH correction
fields described in [41–43] are recovered when the lifting operator in (3.30) is defined using
the exact reference mass matrix in (3.9) and facet mass matrices satisfying (3.12).

1As discussed in [41, Section 3.3], [44, Section 3.2], and [82, Section 3.6], the condition c ≥ 0 is sufficient
but not necessary for positive-definiteness of W + K in the one-dimensional case.
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3.3 Analysis

With the DG and FR methods recast in terms of matrix operators on the reference element,
we are now able to analyze such schemes based on the algebraic properties of such constituent
operators. In this section, such an approach will allow us to demonstrate the discrete
equivalence between strong and weak formulations of the conservation law (and, hence, the
relation between the DG and FR methods) and will facilitate unified proofs of local and
global conservation as well as energy stability for the constant-coefficient linear advection
equation on meshes for which the mapping from reference coordinates is affine.

3.3.1 Equivalence and unification

Just as integration by parts allows for the weak form of a PDE to be obtained from the strong
form, the SBP property may be used analogously to transform a strong-form discretization
into a weak-form discretization, and vice versa (as discussed, for example, in [65, Section
8.1] and [69, Section 2.1]). The following theorem establishes such an equivalence within the
context of the present framework.

Theorem 3.1. Let Assumption 3.1 hold and define f̂ (κ,l,e)(t) as in (3.28). The weak-form
right-hand side in (3.24) is then equivalent to a strong formulation, as given by

r(h,κ,e)(t) = −
d∑
l=1

WD(l)f̂ (κ,l,e)(t)

−
Nf∑
ζ=1

(
R(ζ)

)T
B (ζ)

(
J (κ,ζ)f (∗,κ,ζ,e)(t)−R(ζ)

d∑
l=1

n̂
(ζ)
l f̂ (κ,l,e)(t)

)
.

(3.34)

Proof. Applying (3.6) to the first term on the right-hand side of (3.24), we obtain

r(h,κ,e)(t) =
d∑
l=1

( Nf∑
ζ=1

n̂
(ζ)
l

(
R(ζ)

)T
B (ζ)R(ζ) −WD(l)

)
d∑

m=1
G(κ,l,m)f (κ,m,e)(t)

−
Nf∑
ζ=1

(
R(ζ)

)T
B (ζ)J (κ,ζ)f (∗,κ,ζ,e)(t).

(3.35)

Combining the facet contributions and using (3.28) then results in (3.34).

Remark 3.6. As discussed by Kopriva and Gassner [68] in the context of DG methods using
tensor-product LG and LGL quadrature rules, strong formulations such as the right-hand
side of (3.34) require the extrapolation of the normal component of the transformed flux to
the facet quadrature nodes, resulting in a potential increase in computational expense relative
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to the weak formulation, particularly for volume quadrature rules not including boundary
nodes, in which case the operator R(ζ) must be applied for each facet and coordinate index.

The equivalence in Theorem 3.1 can be used to express FR methods with VCJH correction
fields as nodal DG methods with modified mass matrices, which we demonstrate as follows.

Theorem 3.2. Under Assumptions 3.1 and 3.2, the scheme in (3.27) can be expressed as

(
W +K

)
J (κ) du(h,κ,e)(t)

dt = r(h,κ,e)(t), (3.36)

where r(h,κ,e)(t) is the nodal right-hand side for a weak-form DG scheme given as in (3.24).

Proof. Substituting (3.30) into (3.27) and left-multiplying by (W +K)J (κ) results in

(
W +K

)
J (κ) du(h,κ,e)(t)

dt = −
d∑
l=1

(
W +K

)
D(l)f̂ (κ,l,e)(t)

−
Nf∑
ζ=1

(
R(ζ)

)T
B (ζ)

(
J (κ,ζ)f (∗,κ,ζ,e)(t)−R(ζ)

d∑
l=1

n̂
(ζ)
l f̂ (κ,l,e)(t)

)
.

(3.37)

The contribution of the matrix K to the first term on the right-hand side of (3.37) then
vanishes as a consequence of (3.31a), which, as noted in [44, Section 3.2] and [43, Section 5],
results in the following strong-form nodal DG method with a modified mass matrix:

(
W +K

)
J (κ) du(h,κ,e)(t)

dt = −
d∑
l=1

WD(l)f̂ (κ,l,e)(t)

−
Nf∑
ζ=1

(
R(ζ)

)T
B (ζ)

(
J (κ,ζ)f (∗,κ,ζ,e)(t)−R(ζ)

d∑
l=1

n̂
(ζ)
l f̂ (κ,l,e)(t)

)
.

(3.38)

Finally, noting that the right-hand side of (3.38) is identical to the right-hand side of (3.34),
which holds as a consequence of the SBP property in (3.6), we therefore obtain (3.36).

Remark 3.7. As noted in Remark 3.6, the weak formulation eliminates the flux extrapolation
step. Implementing the FR method in weak form as in (3.36) as opposed to the conventional
strong formulation in (3.27) therefore yields a potential improvement in efficiency.

Remark 3.8. Defining the filter matrix as F := (I (Nq)+W −1K )−1 and letting the corresponding
nodal DG scheme be given by (3.36) with K = 0(Nq×Nq), the FR and nodal DG formulations
are related as (

J (κ) du(h,κ,e)(t)
dt

)
FR

= F

(
J (κ) du(h,κ,e)(t)

dt

)
DG
, (3.39)

where, as shown in [44, Section 3.2] and [43, Appendix B], the filter acts only on modes for
which |α| = q when K is defined as in (3.33) using the exact mass matrix in (3.9). Since
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Theorem 3.1 establishes that the strong and weak formulations are equivalent when the SBP
property is satisfied, we see that VCJH schemes can be obtained through filtering of the
Jacobian-weighted time derivative for a nodal DG scheme in strong or weak form.

Representing the solution as in (2.20) in terms of an arbitrary (i.e. nodal or modal) basis
{φ(i)}i∈{1:Np} and defining the modified FR mass matrix for such a basis as

M̃ (κ) := V T
(
W +K

)
J (κ)V , (3.40)

we obtain a generalized formulation given in terms of the nodal right-hand side in (3.24) as

M̃ (κ) dũ(h,κ,e)(t)
dt = V Tr(h,κ,e)(t). (3.41)

Such a formulation recovers the DG scheme in (3.18) when K = 0(Nq×Nq), where any set of
SBP operators satisfying Assumption 3.1 may be used. We likewise obtain the standard FR
scheme in (3.27) under Assumptions 3.1 and 3.2 when V is the identity matrix and D(l) and
R(ζ) are defined as in (3.7a) and (3.7b), respectively, where we note that such a simplification
results from the choice of a nodal basis satisfying φ(i)(ξ(j)) = δij, for which Nq = Np is a
necessary condition. If we make both of the above simplifications, we recover a nodal DG
scheme given by

du(h,κ,e)(t)
dt =

(
J (κ)

)−1
(

d∑
l=1

W −1
(
D(l)

)T
W

d∑
m=1

G(κ,l,m)f (κ,m,e)(t)

−
Nf∑
ζ=1

W −1
(
R(ζ)

)T
B (ζ)J (κ,ζ)f (∗,κ,ζ,e)(t)

)
.

(3.42)

The present framework can then be said to unify several existing discretization approaches,
and the remainder of the analysis in this section will therefore employ the unified formulation
in (3.41), where we note the above simplifications occurring for K = 0(Nq×Nq) and V = I (Nq).

Remark 3.9. We are not restricted to the use of discretizations employing polynomial ex-
pansions, as the analysis in this section immediately extends to methods in the form of
(3.42) using any SBP approximation D(l) of each partial derivative ∂/∂ξl satisfying the
conditions of Assumption 3.1, which may not correspond to any analytical (i.e. polynomial
or non-polynomial) basis. For such schemes, the solution to (2.1) is approximated as

Ue(X(κ)(ξ(i)), t) ≈ u
(h,κ,e)
i (t), ∀ i ∈ {1 : Nq}, (3.43)

where, when no explicit basis is present, the numerical solution is only defined at the nodes,
similarly to the finite-difference methods from which the SBP concept originates.
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3.3.2 Local and global conservation

The following theorem establishes that the unified DSEM formulation in (3.41) is locally
conservative in an element-wise sense, a property which, by way of the well-known Lax–
Wendroff theorem (see, for example, the original result in [125] and its modern generalization
by Shi and Shu [126]) ensures that a convergent discretization converges to a weak solution
under mesh refinement, and is thus suitable for the treatment of problems with discontinuities.

Theorem 3.3. Let Assumptions 3.1 and 3.2 hold and define r(h,κ,e)(t) and M̃ (κ) as in (3.24)
and (3.40), respectively. The resulting scheme in (3.41) is then locally conservative, satisfying

d
dt
(
1(Nq)

)T
WJ (κ)u(h,κ,e)(t) = −

Nf∑
ζ=1

(
1(N(ζ)

qf
)
)T
B (ζ)J (κ,ζ)f (∗,κ,ζ,e)(t). (3.44)

Proof. Since constant functions lie within the span of {φ(i)}i∈{1:Nq} under Assumption 3.1,
there exists a vector 1 ∈ RNp satisfying V 1 = 1(Nq). Multiplying both sides of (3.41) from
the left by the transpose of such a vector (i.e. taking a constant test function in a discrete
sense), we can use the fact that (3.31b) holds under Assumption 3.2 to obtain

1 TM̃ (κ) dũ(h,κ,e)(t)
dt =

(
1(Nq)

)T(
W +K

)
J (κ) du(h,κ,e)(t)

dt
= d

dt
(
1(Nq)

)T
WJ (κ)u(h,κ,e)(t).

(3.45)

Noting that the volume contributions in (3.24) vanish when left-multiplied by (1(Nq))T as a
consequence of the fact that constants are differentiated exactly under Assumption 3.1 as
D(l)1(Nq) = 0(Nq) and similarly using R(ζ)1(Nq) = 1(N(ζ)

qf
) to simplify the facet contributions

then gives
1 TV Tr(h,κ,e)(t) =

(
1(Nq)

)T
r(h,κ,e)(t)

= −
Nf∑
ζ=1

(
1(N(ζ)

qf
)
)T
B (ζ)J (κ,ζ)f (∗,κ,ζ,e)(t).

(3.46)

Using (3.45) on the left-hand side and (3.46) on the right-hand side therefore results in the
statement of local conservation in (3.44).

To prove that the scheme is globally conservative, meaning that no spurious generation or
destruction of the integrated conservative variables occurs over the entire domain, we make
the following assumption regarding the conformity of the mesh.

Assumption 3.3. For each pair of element indices κ, ν ∈ {1 : Ne} with κ 6= ν such that
∂Ω(κ) ∩ ∂Ω(ν) 6= ∅, there exist a unique pair of indices ζ, η ∈ {1 : Nf} such that Γ(κ,ζ) = Γ(ν,η)

and the following two conditions are satisfied:
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• For every i ∈ {1 : N (ζ)
qf
} there exists a unique j ∈ {1 : N (η)

qf
} for which we have

n(κ,ζ)(X(κ)(ξ(ζ,i))) = −n(ν,η)(X(ν)(ξ(η,j))). (3.47)

• The facet matrices B (η)J (ν,η) and B (ζ)J (κ,ζ) are related through the permutation matrix
T (κ,ζ) ∈ RN

(ζ)
qf
×N(ζ)

qf corresponding to the bijective mapping i 7→ j in (3.47) as

B (η)J (ν,η) =
(
T (κ,ζ)

)T
B (ζ)J (κ,ζ)T (κ,ζ). (3.48)

Both of such conditions also hold for facets Γ(κ,ζ) and Γ(ν,η) which are connected through
periodic boundary conditions imposed using the numerical flux function.

We now have the following theorem establishing global conservation.

Theorem 3.4. Suppose that a discretization is locally conservative, satisfying (3.44) for
all κ ∈ {1 : Ne}, that the numerical flux is conservative in the sense of (2.23b), and that
Assumption 3.3 holds. The resulting scheme is then globally conservative, satisfying

d
dt

Ne∑
κ=1

(
1(Nq)

)T
WJ (κ)u(h,κ,e)(t) = −

∑
Γ(κ,ζ)⊂∂Ω

(
1(N(ζ)

qf
)
)T
B (ζ)J (κ,ζ)f (∗,κ,ζ,e)(t), (3.49)

where the right-hand side vanishes when the entire boundary ∂Ω is taken to be periodic.

Proof. To demonstrate that the scheme is globally conservative, we sum (3.44) over all
elements in order to obtain

d
dt

Ne∑
κ=1

(
1(Nq)

)T
WJ (κ)u(h,κ,e)(t) =

Ne∑
κ=1

Nf∑
ζ=1

(
1(N(ζ)

qf
)
)T
B (ζ)J (κ,ζ)f (∗,κ,ζ,e)(t). (3.50)

Considering two adjacent elements Ω(κ) and Ω(ν) which share an interior facet Γ(κ,ζ) = Γ(ν,η),
the net contribution to (3.50) arising from such an interface is given by

Φ(κ,ζ)
e (t) :=

(
1(N(ζ)

qf
)
)T
B (ζ)J (κ,ζ)f (∗,κ,ζ,e)(t) +

(
1(N(η)

q )
)T
B (η)J (ν,η)f (∗,ν,η,e)(t). (3.51)

Using (3.48) to combine the two terms in (3.51), we then obtain

Φ(κ,ζ)
e (t) =

(
1(N(ζ)

qf
)
)T
B (ζ)J (κ,ζ)f (∗,κ,ζ,e)(t) +

(
1(N(η)

q )
)T(

T (κ,ζ)
)T
B (ζ)J (κ,ζ)T (κ,ζ)f (∗,ν,η,e)(t)

=
(
1(N(ζ)

qf
)
)T
B (ζ)J (κ,ζ)

(
f (∗,κ,ζ,e)(t) + T (κ,ζ)f (∗,ν,η,e)(t)

)
, (3.52)

which is zero due to the fact that f (∗,κ,ζ,e)(t) = −T (κ,ζ)f (∗,ν,η,e)(t) when (2.23a) and (3.47)
are satisfied. Since only the facets lying on the domain boundary remain in the sum on
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the right-hand side of (3.50), we therefore obtain the statement of global conservation in
(3.49). Since periodic interfaces also satisfy (3.47) and (3.48) under Assumption 3.3, their
contribution to the right-hand side of (3.50) thus vanishes as well.

Remark 3.10. Although we invoke Assumption 3.3 in the above proof and throughout this
thesis to simplify our analysis, the extension of the theory to nonconforming meshes arising
from h-adaptivity or p-adaptivity is, in principle, straightforward, provided that suitable
interface interpolation operators are employed (see, for example, Kozdon and Wilcox [127],
Del Rey Fernández et al. [128], Shadpey and Zingg [129], and Chan et al. [130]).

3.3.3 Energy stability

While certain modifications, which we will discuss in Chapters 5 and 6, are required to obtain
provably stable schemes for curvilinear meshes and nonlinear problems, the SBP property
allows one to prove that the standard DG and FR methods described in Section 3.2 are
energy stable for the constant-coefficient linear advection equation on affine meshes. To
demonstrate this, we first require the following lemma.

Lemma 3.2. Let r(h,κ)(t) denote the nodal right-hand side in (3.24) for a discretization of
the constant-coefficient linear advection equation, which is given for a ∈ Rd by

∂U(x, t)
∂t

+∇x ·
(
aU(x, t)

)
= 0, ∀ (x, t) ∈ Ω× (0, T ), (3.53)

where Assumption 3.1 holds and the mapping is affine, satisfying X(κ) ∈ [P1(Ω̂)]d. Any nodal
solution vector u(h,κ)(t) ∈ RNq then satisfies

(
u(h,κ)(t)

)T
r(h,κ)(t) =

Nf∑
ζ=1

(
d∑

m=1

am
2
(
u(h,κ)(t)

)T(
R(ζ)

)T
B (ζ)J (κ,ζ)N (κ,ζ,m)R(ζ)u(h,κ)(t)

−
(
u(h,κ)(t)

)T(
R(ζ)

)T
B (ζ)J (κ,ζ)f (∗,κ,ζ)(t)

)
,

(3.54)

where the equation index has been suppressed since we are considering a scalar problem.

Proof. Multiplying (3.24) from the left by (u(h,κ)(t))T, which corresponds to taking the
solution as a test function, and inserting the linear flux f (κ,m,e)(t) = amu

(h,κ)(t), we obtain

(
u(h,κ)(t)

)T
r(h,κ)(t) =

d∑
m=1

am
d∑
l=1

(
u(h,κ)(t)

)T(
D(l)

)T
WG(κ,l,m)u(h,κ)(t)

−
Nf∑
ζ=1

(
u(h,κ)(t)

)T(
R(ζ)

)T
B (ζ)J (κ,ζ)f (∗,κ,ζ)(t).

(3.55)
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Using the SBP property in (3.6) to discretely integrate by parts in reference coordinates as

(
u(h,κ)(t)

)T(
D(l)

)T
Wu(h,κ)(t) = 1

2

Nf∑
ζ=1

n̂
(ζ)
l

(
u(h,κ)(t)

)T(
R(ζ)

)T
B (ζ)R(ζ)u(h,κ)(t) (3.56)

and noting that the metric terms are constant such that G(κ,l,m) = G
(κ)
lm I

(Nq) when the
mapping is affine, we can express the first term on the right-hand side of (3.55) as

d∑
m=1

am
d∑
l=1

(
u(h,κ)(t)

)T(
D(l)

)T
WG(κ,l,m)u(h,κ)(t) =

d∑
m=1

am
2

(
d∑
l=1

G
(κ)
lm n̂

(ζ)
l

) Nf∑
ζ=1

(
u(h,κ)(t)

)T(
R(ζ)

)T
B (ζ)R(ζ)u(h,κ)(t).

(3.57)

Using (2.14) on the right-hand side of (3.57) to obtain J (κ,ζ)N (κ,ζ,m) from the metric terms
and substituting the result into (3.55) then results in (3.54).

The result in (3.54) allows for the contributions to the semi-discrete energy balance arising
from the volume terms of (3.24) to be expressed as interface terms, which we use to prove
the following theorem.

Theorem 3.5. Let all of Assumptions 3.1 to 3.3 hold and assume that the numerical flux for
the constant-coefficient linear advection equation takes the form

F ∗(U−, U+,n) := 1
2(a · n)(U+ + U−)− λ

2 |a · n|(U
+ − U−), (3.58)

where the parameter λ ∈ R+
0 takes the same value on each side of an interior or periodic

interface, and that the mapping from the reference element onto each physical element is
affine and satisfies (2.11). Defining the solution energy for the formulation in (3.41) as

Eh(t) := 1
2

Ne∑
κ=1

(
u(h,κ)(t)

)T(
W +K

)
J (κ)u(h,κ)(t), (3.59)

such a scheme then satisfies the following semi-discrete energy estimate when applied to the
constant-coefficient linear advection equation:

dEh(t)
dt ≤

∑
Γ(κ,ζ)⊂∂Ω

(
d∑

m=1

am
2
(
u(h,κ)(t)

)T(
R(ζ)

)T
B (ζ)J (κ,ζ)N (κ,ζ,m)R(ζ)u(h,κ)(t)

−
(
u(h,κ)(t)

)T(
R(ζ)

)T
B (ζ)J (κ,ζ)f (∗,κ,ζ)(t)

)
.

(3.60)

Proof. Multiplying (3.41) from the left by (ũ(h,κ)(t))T and using (3.17) as well as the fact
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that (W +K )J (κ) is symmetric when the mapping is affine, the left-hand side of the energy
balance becomes

(
ũ(h,κ)(t)

)T
M̃ (κ) dũ(h,κ)(t)

dt =
(
u(h,κ)(t)

)T(
W +K

)
J (κ) du(h,κ)(t)

dt
= 1

2
d
dt
(
u(h,κ)(t)

)T(
W +K

)
J (κ)u(h,κ)(t).

(3.61)

Using (3.17) and (3.54) on the right-hand side and summing over all elements, the rate of
change in the solution energy given by (3.59) can be expressed as

dEh(t)
dt =

Ne∑
κ=1

Nf∑
ζ=1

(
d∑

m=1

am
2
(
u(h,κ)(t)

)T(
R(ζ)

)T
B (ζ)J (κ,ζ)N (κ,ζ,m)R(ζ)u(h,κ)(t)

−
(
u(h,κ)(t)

)T(
R(ζ)

)T
B (ζ)J (κ,ζ)f (∗,κ,ζ)(t)

)
.

(3.62)

As in the proof of Theorem 3.4, we can bound the right-hand side of (3.62) by considering
two adjacent elements Ω(κ) and Ω(ν) which share an interior facet Γ(κ,ζ) = Γ(ν,η). Defining the
diagonal matrix of wave speeds in the normal direction for convenience, as given by

A(κ,ζ) :=
d∑

m=1
amN

(κ,ζ,m), (3.63)

with |A(κ,ζ)| containing the absolute values of the entries of A(κ,ζ), we can use Assumption 3.3
to express the contributions from the numerical flux in (3.58) as

(
u(h,κ)(t)

)T(
R(ζ)

)T
B (ζ)J (κ,ζ)f (∗,κ,ζ)(t) = 1

2
(
u(h,κ)(t)

)T(
R(ζ)

)T
B (κ,ζ)J (κ,ζ)A(κ,ζ)R(ζ)u(h,κ)(t)

+ 1
2
(
u(h,κ)(t)

)T(
R(ζ)

)T
B (κ,ζ)J (κ,ζ)A(κ,ζ)T (κ,ζ)R(η)u(h,ν)(t)

− λ

2
(
u(h,κ)(t)

)T(
R(ζ)

)T
B (κ,ζ)J (κ,ζ)|A(κ,ζ)

∣∣∣T (κ,ζ)R(η)u(h,ν)(t)

+ λ

2
(
u(h,κ)(t)

)T(
R(ζ)

)T
B (κ,ζ)J (κ,ζ)

∣∣∣A(κ,ζ)
∣∣∣R(ζ)u(h,κ)(t) (3.64)

and

(
u(h,ν)(t)

)T(
R(η)

)T
B (η)J (ν,η)f (∗,κ,ζ)(t) = −1

2
(
u(h,ν)(t)

)T(
R(η)

)T
B (η)J (ν,η)A(ν,η)R(η)u(h,ν)(t)

− 1
2
(
u(h,ν)(t)

)T(
R(η)

)T(
T (κ,ζ)

)T
B (ζ)J (κ,ζ)A(κ,ζ)R(ζ)u(h,κ)(t)

− λ

2
(
u(h,ν)(t)

)T(
R(η)

)T(
T (κ,ζ)

)T
B (ζ)J (κ,ζ)

∣∣∣A(κ,ζ)
∣∣∣R(ζ)u(h,κ)(t)

+ λ

2
(
u(h,ν)(t)

)T(
R(ζ)

)T(
T (κ,ζ)

)T
B (ζ)J (κ,ζ)

∣∣∣A(κ,ζ)
∣∣∣T (κ,ζ)R(η)u(h,ν)(t). (3.65)



Chapter 3. Unifying framework for DSEMs based on the SBP property 41

Using the above expressions, the net contribution to the right-hand side of (3.62) arising at
such an interface is then given by

− λ

2
(
d(κ,ζ)(t)

)T
B (ζ)J (κ,ζ)

∣∣∣A(κ,ζ)
∣∣∣d(κ,ζ)(t), (3.66)

where the jump in the solution at such an interface is given by

d(κ,ζ)(t) := R(ζ)u(h,κ)(t)− T (κ,ζ)R(η)u(h,ν)(t), (3.67)

and we note that the dissipation rate in (3.66) is zero for λ = 0 and non-positive for λ > 0
due to the positive semidefiniteness of B (ζ)J (κ,ζ)|A(κ,ζ)|. Applying the above procedure to all
interior interfaces, we therefore obtain (3.60).

Remark 3.11. Treating periodic interfaces in the same fashion as interior interfaces, a similar
argument to that employed in the proof of Theorem 3.5 can be used to obtain

dEh(t)
dt ≤ 0 (3.68)

when all boundary conditions are periodic and λ ≥ 0, where such a relation becomes an
equality in the case of λ = 0, corresponding to semi-discrete energy conservation.

3.4 Chapter summary

This chapter presents the essential components of our proposed methodology for the matrix-
based formulation and analysis of DSEMs for conservation laws. We describe the construction
of collocation-based and quadrature-based discretization operators satisfying the SBP property
on the reference element, which we use to obtain a unified matrix formulation for standard
DG and FR methods in strong or weak form. Algebraic proofs of conservation and energy
stability are then presented for such a unified formulation, establishing a common set of tools
which will be employed throughout the remainder of this thesis for the analysis of the novel
schemes described therein.



Chapter 4

Tensor-product summation-by-parts operators
on the reference triangle and tetrahedron

In this chapter, which is based on the content of Papers II and III, a methodology is presented
for constructing tensor-product spectral-element operators of any order with the SBP property
on the reference triangle and tetrahedron. These operators are sparse and support sum
factorization, and will be used in Chapters 5 and 6 to construct efficient energy-stable and
entropy-stable discretizations, respectively, on curved triangles and tetrahedra.

4.1 Tensor-product SBP operators on the reference triangle

The operators which we will construct in this section are defined on the reference triangle
with vertices at [−1,−1]T, [1,−1]T, and [−1, 1]T, which is given by

Ω̂ :=
{
ξ ∈ [−1, 1]2 : ξ1 + ξ2 ≤ 0

}
, (4.1)

where, as a convention, we number the facets (i.e. edges of the triangle) as

Γ̂(1) :=
{
ξ ∈ Ω̂ : ξ2 = −1

}
, (4.2a)

Γ̂(2) :=
{
ξ ∈ Ω̂ : ξ1 + ξ2 = 0

}
, (4.2b)

Γ̂(3) :=
{
ξ ∈ Ω̂ : ξ1 = −1

}
. (4.2c)

The outward unit normal vectors to each facet are then given by

n̂(1) =
 0
−1

, n̂(2) =
1/
√

2
1/
√

2

, n̂(3) =
−1

0

. (4.3)

The proposed schemes are constructed based on a collapsed coordinate system η ∈ [−1, 1]2,
from which any point can be mapped onto the reference coordinate system ξ ∈ Ω̂ through

42
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−→
χ

Figure 4.1: Illustration of the mapping ξ = χ(η) from the square to the reference triangle

the mapping χ : [−1, 1]2 → Ω̂ depicted in Figure 4.1, which is given by

χ(η) :=
1

2(1 + η1)(1− η2)− 1
η2

, (4.4)

where we adopt a similar notation to [110, Section 3.2]. Such a mapping has an inverse given
away from the singularity by

χ−1(ξ) :=
2(1 + ξ1)/(1− ξ2)− 1

ξ2

, ∀ ξ ∈ Ω̂ \

−1

1

. (4.5)

It is then straightforward to show that integrals on the reference element can be expressed in
terms of the collapsed coordinate system as

∫
Ω̂
V (ξ) dξ =

∫ 1

−1

∫ 1

−1
V (χ(η))1− η2

2 dη1dη2. (4.6)

Similarly, partial derivatives with respect to each reference coordinate may be computed in
terms of the collapsed coordinate system via the chain rule as

∂V

∂ξ1
(χ(η)) = 2

1− η2

∂

∂η1
V (χ(η)), ∂V

∂ξ2
(χ(η)) =

(
1 + η1

1− η2

∂

∂η1
+ ∂

∂η2

)
V (χ(η)), (4.7)

where we note that such expressions are undefined at the top edge (i.e. η2 = 1), which
collapses onto the singular vertex ξ = [−1, 1]T under the transformation in (4.4).

4.1.1 Nodal sets and interpolants

Let q1 and q2 denote the degrees of the polynomial approximations with respect to η1 and η2,
respectively, and define q := min(q1, q2), where we allow for the use of different polynomial
degrees in each direction and note that this flexibility could be exploited, for example, within
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the context of anisotropic p-adaptivity. We then construct Gaussian quadrature rules as in
Section 2.4 with nodes and weights given by

{η(i)
1 }i∈{0:q1} ⊂ [−1, 1], {η(i)

2 }i∈{0:q2} ⊂ [−1, 1),
{ω(i)

1 }i∈{0:q1} ⊂ R+, {ω(i)
2 }i∈{0:q2} ⊂ R+,

(4.8)

where we note that a half-open interval in the η2 coordinate is used to avoid the singularity
of the mapping in (4.4). Letting am, bm > −1 for m ∈ {1, 2}, such quadrature rules satisfy

qm∑
i=0

V (η(i)
m )ω(i)

m =
∫ 1

−1
V (ηm)(1− ηm)am(1 + ηm)bm dηm, ∀V ∈ P

τ
(am,bm)
m

([−1, 1]), (4.9)

where we recall that τ (am,bm)
m = 2qm + 1 for Gauss quadrature, τ (am,bm)

m = 2qm for Gauss–
Radau quadrature, and τ (am,bm)

m = 2qm − 1 for Gauss–Lobatto quadrature rules. Defining the
corresponding Lagrange polynomials as in (2.32), we can interpolate a function V : Ω̂→ R
on the reference triangle by way of the mapping in (4.4) as

(IqV )(χ(η)) :=
q1∑

α1=0

q2∑
α2=0

V (χ(η(α1)
1 , η

(α2)
2 ))`(α1)

1 (η1)`(α2)
2 (η2). (4.10)

The above interpolant is, in general, a rational function with a singularity at ξ = [−1, 1]T

when expressed in reference coordinates under the inverse mapping in (4.5). However, despite
being based on a rational function space (the approximation properties of which are analyzed
by Shen et al. [131] and Li and Wang [132]), the interpolation is exact for all polynomials of
up to degree q, as characterized by the following lemma.

Lemma 4.1. The tensor-product interpolation operator defined in (4.10) is exact for any
polynomial V ∈ Pq(Ω̂), satisfying (IqV )(ξ) = V (ξ) for all ξ ∈ Ω̂ \ {[−1, 1]T}.

Proof. First, we note that any monomial of the form π(α1,α2)(ξ) := ξα1
1 ξα2

2 with α ∈ P(q) can
be expressed in terms of the collapsed coordinate system as

π(α1,α2)(χ(η)) =
(

1
2(1 + η1)(1− η2)− 1

)α1
ηα2

2 , (4.11)

which is of maximum degree α1 in η1 and of maximum degree α1 + α2 in η2. Since α1 ≤ q1

and α1 + α2 ≤ q2 for all α ∈ P(q), it follows from expressing any polynomial V ∈ Pq(Ω̂) as a
linear combination of monomials in the form of (4.11) that the composite function V ◦ χ lies
within the span of the tensor-product basis, and is therefore interpolated exactly.
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4.1.2 Volume quadrature

Defining the multi-index set Q(q1, q2) := {0 : q1} × {0 : q2}, we let σ : Q(q1, q2)→ {1 : Nq}
denote a bijective mapping which defines an ordering of the Nq := (q1 + 1)(q2 + 1) tensor-
product quadrature nodes on the square. Using the mapping in (4.4), we can then define a
quadrature rule in the form of (3.1) approximating integrals on the reference triangle under
the change of variables in (4.6), where we let the nodes {ξ(i)}i∈{1:Nq} ⊂ Ω̂ be given for a
multi-index α ∈ Q(q1, q2) by

ξ(σ(α)) := χ(η(α1)
1 , η

(α2)
2 ). (4.12)

The corresponding weights {ω(i)}i∈{1:Nq} are given for (a1, b1) = (0, 0) and (a2, b2) = (0, 0) by

ω(σ(α)) := 1− η(α2)
2

2 ω
(α1)
1 ω

(α2)
2 (4.13)

or, alternatively, by
ω(σ(α)) := 1

2ω
(α1)
1 ω

(α2)
2 (4.14)

if a Jacobi-type quadrature rule with (a2, b2) = (1, 0) is instead used as in [56, Section 2.2.1]
to subsume the factor of 1− η2 arising from the change of variables in (4.6).

4.1.3 Facet quadrature

In order to integrate over the facets of the reference triangle, we introduce an additional
one-dimensional quadrature rule with qf + 1 nodes and weights given by

{η(i)
f }i∈{0:qf} ⊂ [−1, 1], {ω(i)

f }i∈{0:qf} ⊂ R+
0 , (4.15)

where we assume that such a rule is of degree τf with respect to the Legendre weight, satisfying

qf∑
i=0

V (η(i)
f )ω(i)

f =
∫ 1

−1
V (ηf ) dηf , ∀V ∈ Pτf ([−1, 1]). (4.16)

Transforming integrals on each facet in (4.2) as
∫

Γ̂(1)
V (ξ) dŝ =

∫ 1

−1
V (χ(ηf ,−1)) dηf , (4.17a)∫

Γ̂(2)
V (ξ) dŝ =

√
2
∫ 1

−1
V (χ(1, ηf )) dηf , (4.17b)∫

Γ̂(3)
V (ξ) dŝ =

∫ 1

−1
V (χ(−1, ηf )) dηf , (4.17c)
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we can then define quadrature rules using N (ζ)
qf

:= qf + 1 nodes on each facet as

ξ(1,i) := χ(η(i−1)
f ,−1), ξ(2,i) := χ(1, η(i−1)

f ), ξ(3,i) := χ(−1, η(i−1)
f ),

ω(1,i) := ω
(i−1)
f , ω(2,i) :=

√
2ω(i−1)

f , ω(3,i) := ω
(i−1)
f ,

(4.18)

where the corresponding approximation in the form of (3.2) is exact for V ∈ Pτf (Γ̂(ζ)) since
each facet is an affine mapping of the interval over which the integral in (4.15) is evaluated.

4.1.4 Summation-by-parts operators

The interpolation in (4.10) can be expressed in reference coodinates for ξ ∈ Ω̂ \ {[−1, 1]T} as

(IqV )(ξ) =
Nq∑
i=1

V (ξ(i))`(i)(ξ), (4.19)

where the nodal basis functions {`(i)}i∈{1:Nq} satisfy `(i)(ξ(j)) = δij for the volume quadrature
nodes constructed as in (4.12), and are defined in terms of the one-dimensional Lagrange
polynomials as

`(σ(α))(χ(η)) := `
(α1)
1 (η1)`(α2)

2 (η2). (4.20)

Differentiating each basis function in (4.20) with respect to ξ1 and ξ2 at each volume quadrature
node using the chain-rule expressions in (4.7), we then obtain collocation derivative operators
D(1), D(2) ∈ RNq×Nq in the form of (3.7a) with entries given by

D
(1)
σ(α)σ(β) := 2

1− η(α2)
2

d`(β1)
1

dη1
(η(α1)

1 )δα2β2 , (4.21a)

D
(2)
σ(α)σ(β) := 1 + η

(α1)
1

1− η(α2)
2

d`(β1)
1

dη1
(η(α1)

1 )δα2β2 + δα1β1

d`(β2)
2

dη2
(η(α2)

2 ). (4.21b)

Similarly, we can evaluate (4.20) at the facet quadrature nodes in order to obtain interpola-
tion/extrapolation operators R(1), R(2), R(3) ∈ RN

(ζ)
qf
×Nq in the form of (3.7b) as

R
(1)
i,σ(β) := `

(β1)
1 (η(i−1)

f )`(β2)
2 (−1), (4.22a)

R
(2)
i,σ(β) := `

(β1)
1 (1)`(β2)

2 (η(i−1)
f ), (4.22b)

R
(3)
i,σ(β) := `

(β1)
1 (−1)`(β2)

2 (η(i−1)
f ). (4.22c)

Using the above expressions and defining W and B (ζ) as in (3.3) using the quadrature rules
introduced in Sections 4.1.2 and 4.1.3, the following theorem provides sufficient conditions
under which the proposed operators satisfy the requirements of Definition 2.3.
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Theorem 4.1. Suppose that (4.9) and (4.16) hold for the quadrature rules in (4.8) and (4.15),
respectively, such that τ (0,0)

1 ≥ 2q1, τ (0,0)
2 ≥ 2q2, and τf ≥ 2 max(q1, q2). The matrices D(1)

and D(2) given in (4.21a) and (4.21b) are then diagonal-norm SBP operators of degree q

approximating ∂/∂ξ1 and ∂/∂ξ2, respectively, with boundary operators in the form of (2.45).

Proof. The accuracy conditions for D(l) in (2.41) and those for R(ζ) in (2.46) follow from
Lemma 4.1 as well as the fact that the action of such operators can be expressed as

D(l)


V (ξ(1))

...
V (ξ(Nq))

 =


(∂IqV/∂ξl)(ξ(1))

...
(∂IqV/∂ξl)(ξ(Nq))

, (4.23a)

R(ζ)


V (ξ(1))

...
V (ξ(Nq))

 =


(IqV )(ξ(ζ,1))

...
(IqV )(ξ(ζ,N(ζ)

qf
))

. (4.23b)

Defining E (l) as in (2.45) and using the polynomial exactness of R(ζ) as well as the fact that
τf ≥ 2q implies that each facet quadrature rule is exact for the corresponding trace space
P2q(Γ̂(ζ)) defined as in (2.17), we therefore obtain (2.42). Since W is SPD due to the fact
that the weights in (4.13) are positive when there is no node at η2 = 1, as is the case for the
quadrature rules in (4.8), all that remains is to show that the SBP property is satisfied.

Beginning with the ξ1 direction, we define Q(1) := WD(1) and note that the denominator
in (4.21a) is cancelled by the factor 1 − η(α2)

2 appearing in (4.13). Taking α,β ∈ Q(q1, q2)
and using the cardinal property of the Lagrange bases as well as the polynomial exactness of
the quadrature, we then obtain

Q
(1)
σ(α)σ(β) =

∫ 1

−1
`

(α1)
1 (η1)d`(β1)

1
dη1

(η1) dη1︸ ︷︷ ︸
τ

(0,0)
1 ≥ 2q1−1

∫ 1

−1
`

(α2)
2 (η2)`(β2)

2 (η2) dη2︸ ︷︷ ︸
τ

(0,0)
2 ≥ 2q2

(4.24)

and
E

(1)
σ(α)σ(β) = `

(α1)
1 `

(β1)
1

∣∣∣1
−1

∫ 1

−1
`

(α2)
2 (ηf )`(β2)

2 (ηf ) dηf︸ ︷︷ ︸
τf ≥ 2q2

, (4.25)

where the latter expression follows from substitution of (4.22) and (4.3) into (2.45), and the
SBP property results from a straightforward application of integration by parts to obtain

Q
(1)
σ(α)σ(β) = E

(1)
σ(α)σ(β) −Q

(1)
σ(β)σ(α). (4.26)
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Noting that a similar cancellation of 1− η(α2)
2 occurs for Q(2) := WD(2), we obtain

Q
(2)
σ(α)σ(β) =

∫ 1

−1

1 + η1

2 `
(α1)
1 (η1)d`(β1)

1
dη1

(η1) dη1︸ ︷︷ ︸
τ

(0,0)
1 ≥ 2q1

∫ 1

−1
`

(α2)
2 (η2)`(β2)

2 (η2) dη2︸ ︷︷ ︸
τ

(0,0)
2 ≥ 2q2

+
∫ 1

−1
`

(α1)
1 (η1)`(β1)

1 (η1) dη1︸ ︷︷ ︸
τ

(0,0)
1 ≥ 2q1

∫ 1

−1

1− η2

2 `
(α2)
2 (η2)∂`

(β2)
2
∂η2

(η2) dη2︸ ︷︷ ︸
τ

(0,0)
2 ≥ 2q2

(4.27)

and
E

(2)
σ(α)σ(β) = `

(α1)
1 (1)`(β1)

1 (1)
∫ 1

−1
`

(α2)
2 (ηf )`(β2)

2 (ηf ) dηf︸ ︷︷ ︸
τf ≥ 2q2

− `(α2)
2 (−1)`(β2)

2 (−1)
∫ 1

−1
`

(α1)
1 (ηf )`(β1)

1 (ηf ) dηf︸ ︷︷ ︸
τf ≥ 2q1

.

(4.28)

Similarly to (4.26), applying integration by parts and the product rule to (4.27) results in

Q
(2)
σ(α)σ(β) = E

(2)
σ(α)σ(β) −Q

(2)
σ(β)σ(α). (4.29)

Since σ maps every multi-index in Q(q1, q2) to a unique scalar index in {1 : Nq}, and since
W is SPD and therefore invertible under the present assumptions, the fact that (4.26) and
(4.29) hold for all α,β ∈ Q(q1, q2) implies that the operators in (4.21) can be expressed in
the form D(l) = W −1Q(l), where the SBP property Q(l) + (Q(l))T = E (l) is satisfied for l = 1
as well as l = 2, thus fulfilling the requirements of Definition 2.3.

Remark 4.1. The discrete derivative operators in (4.21a) and (4.21b) are of the same form
as those proposed in [56, Section 2.2.3]. However, while the quadrature rules employed in
their work are constructed as in (4.14) in order to subsume the Jacobian determinant of
the coordinate transformation appearing in integrals such as (4.6), such choices do not, in
general, result in nodal SBP operators on the reference triangle in the sense of Definition 2.3.
This is because the factor of 1 − η(α2)

2 in (4.13), which is subsumed through the use of a
Jacobi weight with (a2, b2) = (1, 0) in (4.14), is precisely what leads to the cancellation of the
denominators in (4.21a) and (4.21b) when D(1) and D(2) are left-multiplied by W , enabling
the exact evaluation of the integrals in (4.24) and (4.27), respectively. While the nodal
operators for (a2, b2) = (1, 0) remain exact for polynomials of degree q as a consequence of
Lemma 4.1, they do not, in general, satisfy the SBP property. Theorem 4.1 therefore requires
the use of quadrature rules based on the Legendre weight for both η1 and η2.
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−→
χ

Figure 4.2: Illustration of the mapping ξ = χ(η) from the cube to the reference tetrahedron

4.2 Tensor-product SBP operators on the reference tetrahedron

We now extend the methodology presented in Section 4.1 to the three-dimensional case,
wherein approximations are constructed on the reference tetrahedron given by

Ω̂ :=
{
ξ ∈ [−1, 1]3 : ξ1 + ξ2 + ξ3 ≤ −1

}
, (4.30)

which has vertices at [−1,−1, 1]T, [1,−1,−1]T, [−1, 1,−1]T, and [−1,−1, 1]T as well as facets
given by

Γ̂(1) :=
{
ξ ∈ Ω̂ : ξ2 = −1

}
, Γ̂(2) :=

{
ξ ∈ Ω̂ : ξ1 + ξ2 + ξ3 = −1

}
,

Γ̂(3) :=
{
ξ ∈ Ω̂ : ξ1 = −1

}
, Γ̂(4) :=

{
ξ ∈ Ω̂ : ξ3 = −1

}
.

(4.31)

The corresponding outward unit normal vectors are then given as

n̂(1) =


0
−1
0

, n̂(2) =


1/
√

3
1/
√

3
1/
√

3

, n̂(3) =


−1
0
0

, n̂(4) =


0
0
−1

. (4.32)

As described, for example, in [110, Section 3.2], the mapping χ : [−1, 1]3 → Ω̂ from the cube
to the tetrahedron is constructed from three successive applications of (4.4) in order to obtain

χ(η) :=


1
4(1 + η1)(1− η2)(1− η2)− 1

1
2(1 + η2)(1− η3)− 1

η3

, (4.33)

which is shown in Figure 4.2 and has an inverse given away from the singularities by

χ−1(ξ) =


2(1 + ξ1)/(−ξ2 − ξ3)− 1

2(1 + ξ2)/(1− ξ3)− 1
ξ3

, ∀ ξ ∈ Ω̂ \



−1
1
−1

,

−1
−1
1


. (4.34)
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Using such a transformation, integrals can be evaluated in collapsed coordinates as

∫
Ω̂
V (ξ) dξ =

∫ 1

−1

∫ 1

−1

∫ 1

−1
V (χ(η))(1− η2)(1− η3)2

8 dη1dη2dη3, (4.35)

whereas partial derivatives can be evaluated for η ∈ [−1, 1]× [−1, 1)× [−1, 1) as

∂V

∂ξ1
(χ(η)) = 4

(1− η2)(1− η3)
∂

∂η1
V (χ(η)), (4.36a)

∂V

∂ξ2
(χ(η)) =

(
2(1 + η1)

(1− η2)(1− η3)
∂

∂η1
+ 2

1− η3

∂

∂η2

)
V (χ(η)), (4.36b)

∂V

∂ξ3
(χ(η)) =

(
2(1 + η1)

(1− η2)(1− η3)
∂

∂η1
+ 1 + η2

1− η3

∂

∂η2
+ ∂

∂η3

)
V (χ(η)). (4.36c)

4.2.1 Nodal sets and interpolants

Similarly to the triangular case, we let q1, q2, and q3 denote the degrees of the approximations
with respect to the η1, η2, and η3 coordinates, respectively, with q := min(q1, q2, q3), and
define Gaussian quadrature rules with nodes and weights given by

{η(i)
1 }i∈{0:q1} ⊂ [−1, 1], {η(i)

2 }i∈{0:q2} ⊂ [−1, 1), {η(i)
3 }i∈{0:q3} ⊂ [−1, 1),

{ω(i)
1 }i∈{0:q1} ⊂ R+, {ω(i)

2 }i∈{0:q2} ⊂ R+, {ω(i)
3 }i∈{0:q3} ⊂ R+,

(4.37)

satisfying accuracy conditions analogous to (4.9) for m ∈ {1 : 3}. Defining Lagrange bases
{`(i)
m }i∈{0:qm} as in (2.32) and using the mapping in (4.33), we obtain the interpolant

(IqV )(χ(η)) :=
q1∑

α1=0

q2∑
α2=0

q3∑
α3=0

V (χ(η(α1)
1 , η

(α2)
2 , η

(α3)
3 ))`(α1)

1 (η1)`(α2)
2 (η2)`(α3)

3 (η3), (4.38)

whose exactness for polynomials of up to degree q on the reference tetrahedron in (4.30) is
characterized with the following lemma.

Lemma 4.2. The tensor-product interpolation operator in (4.38) is exact for any polynomial
V ∈ Pq(Ω̂), satisfying (IqV )(ξ) = V (ξ) for all ξ ∈ Ω̂ \ {[−1, 1,−1]T, [−1,−1, 1]T}.

Proof. The proof is similar to that of Lemma 4.1, wherein the monomial π(α1,α2,α3)(ξ) :=
ξα1

1 ξα2
2 ξα3

3 with α ∈ P(q) is evaluated under the mapping in (4.33) to obtain

π(α1,α2,α3)(χ(η)) =
(

1
4(1 + η1)(1− η2)(1− η3)− 1

)α1(1
2(1 + η2)(1− η3)− 1

)α2
ηα3

3 , (4.39)

which is of maximum degree α1 in η1, α1 + α2 in η2, and α1 + α2 + α3 in η3. The accuracy of
the interpolation then follows from the fact that α1 ≤ q1, α1 +α2 ≤ q2, and α1 +α2 +α3 ≤ q3
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for all α ∈ P(q), placing any function V ◦ χ which can be expressed as a linear combination
of such monomials within the span of the tensor-product basis used in (4.38).

4.2.2 Volume quadrature

Defining the multi-index set Q(q1, q2, q3) := {0 : q1} × {0 : q2} × {0 : q3}, volume quadrature
rules in the form of (3.1) can be constructed by ordering the Nq := (q1+1)(q2+1)(q3+1) tensor-
product volume quadrature nodes using the bijective mapping σ : Q(q1, q2, q3)→ {1 : Nq}
and applying the mapping in (4.33) to obtain

ξ(σ(α)) := χ(η(α1)
1 , η

(α2)
2 , η

(α3)
3 ). (4.40)

Recalling that integrals transform under the mapping in (4.33) as in (4.35), we can define
quadrature rules on the nodes in (4.40) for (a1, b1) = (a2, b2) = (a3, b3) = (0, 0) with weights
given by

ω(σ(α)) := (1− η(α2)
2 )(1− η(α3)

3 )2

8 ω
(α1)
1 ω

(α2)
2 ω

(α3)
3 , (4.41)

whereas for (a1, b1) = (a2, b2) = (0, 0) and (a3, b3) = (1, 0) we can subsume one factor of
(1− η3) appearing in (4.35) as

ω(σ(α)) := (1− η(α2)
2 )(1− η(α3)

3 )
8 ω

(α1)
1 ω

(α2)
2 ω

(α3)
3 . (4.42)

By a similar argument to that in Remark 4.1, it can be shown that, unlike the quadrature
rules specified above, the choices of (a1, b1) = (0, 0), (a2, b2) = (1, 0), and (a3, b3) = (2, 0)
employed in [57, Section 3.1] do not, in general, result in SBP operators on the volume
quadrature nodes, and are thus not considered in this work.

4.2.3 Facet quadrature

Defining a collapsed coordinate system (ηf1, ηf2) on each facet of the reference tetrahedron,
we let qf1 and qf2 denote the polynomial degree in each of such coordinates and introduce
the bijective mapping σf : Q(qf1, qf2)→ {1 : N (ζ)

qf
}, where N (ζ)

qf
:= (qf1 + 1)(qf2 + 1). Next,

we define one-dimensional quadrature rules for integration with respect to each component of
the facet coordinate system as

{η(i)
f1}i∈{0:qf1} ⊂ [−1, 1], {η(i)

f2}i∈{0:qf2} ⊂ [−1, 1],
{ω(i)

f1}i∈{0:qf1} ⊂ R+
0 , {ω(i)

f2}i∈{0:qf2} ⊂ R+
0 ,

(4.43)
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which satisfy accuracy conditions given by

qf1∑
i=0

V (η(i)
f1)ω(i)

f1 =
∫ 1

−1
V (η)(1− η)af1(1 + η)bf1 dη, ∀V ∈ P

τ
(af1,bf1)
f1

([−1, 1]), (4.44a)

qf2∑
i=0

V (η(i)
f2)ω(i)

f2 =
∫ 1

−1
V (η)(1− η)af2(1 + η)bf2 dη, ∀V ∈ P

τ
(af2,bf2)
f2

([−1, 1]). (4.44b)

Integrals on each facet of the reference element then transform as
∫

Γ̂(1)
V (ξ) dŝ =

∫ 1

−1

∫ 1

−1
V (χ(ηf1,−1, ηf2))1− ηf2

2 dηf1dηf2, (4.45a)∫
Γ̂(1)

V (ξ) dŝ =
∫ 1

−1

∫ 1

−1
V (χ(1, ηf1, ηf2))1− ηf2

2 dηf1dηf2, (4.45b)∫
Γ̂(3)

V (ξ) dŝ =
∫ 1

−1

∫ 1

−1
V (χ(−1, ηf1, ηf2))

√
3(1− ηf2)

2 dηf1dηf2, (4.45c)∫
Γ̂(4)

V (ξ) dŝ =
∫ 1

−1

∫ 1

−1
V (χ(ηf1, ηf2,−1))1− ηf2

2 dηf1dηf2, (4.45d)

and hence the one-dimensional quadrature nodes map onto each facet as

ξ(1,σf (α)) := χ(η(α1)
f1 ,−1, η(α2)

f2 ), ξ(2,σf (α)) := χ(1, η(α1)
f1 , η

(α2)
f2 ),

ξ(3,σf (α)) := χ(−1, η(α1)
f1 , η

(α2)
f2 ), ξ(4,σf (α)) := χ(η(α1)

f1 , η
(α2)
f2 ,−1).

(4.46)

For (af1, bf1) = (af2, bf2) = (0, 0), the corresponding weights are given by

ω(1,σf (α)) := 1
2ω

(α1)
f1 ω

(α2)
f2 , ω(2,σf (α)) :=

√
3

2 ω
(α1)
f1 ω

(α2)
f2 ,

ω(3,σf (α)) := 1
2ω

(α1)
f1 ω

(α2)
f2 , ω(4,σf (α)) := 1

2ω
(α1)
f1 ω

(α2)
f2 ,

(4.47)

whereas for (af1, bf1) = (0, 0) and (af2, bf2) = (1, 0), we have

ω(1,σf (α)) :=
1− η(α2)

f2

2 ω
(α1)
f1 ω

(α2)
f2 , ω(2,σf (α)) :=

√
3(1− η(α2)

f2 )
2 ω

(α1)
f1 ω

(α2)
f2 ,

ω(3,σf (α)) :=
1− η(α2)

f2

2 ω
(α1)
f1 ω

(α2)
f2 , ω(4,σf (α)) :=

1− η(α2)
f2

2 ω
(α1)
f1 ω

(α2)
f2 .

(4.48)

4.2.4 Summation-by-parts operators

Noting that the interpolation in (4.38) can be expressed in the form of (4.19) for ξ ∈
Ω̂ \ {[−1, 1,−1]T, [−1,−1, 1]T} in terms of the nodal basis functions {`(i)}i∈{1:Nq} given by

`(σ(α))(χ(η)) := `
(α1)
1 (η1)`(α2)

2 (η2)`(α3)
3 (η3), (4.49)
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the entries of the matrices D(l) ∈ RNq×Nq and R(ζ) ∈ RN
(ζ)
qf
×Nq can be obtained analogously

to (4.21) and (4.22) for each coordinate index and facet index, respectively, as

D
(1)
σ(α)σ(β) := 4

(1− η(α2)
2 )(1− η(α3)

3 )
d`(β1)

1
dη1

(η(α1)
1 )δα2β2δα3β3 , (4.50a)

D
(2)
σ(α)σ(β) := 2(1 + η

(α1)
1 )

(1− η(α2)
2 )(1− η(α3)

3 )
d`(β1)

1
dη1

(η(α1)
1 )δα2β2δα3α3

+ 2
1− η(α3)

3
δα1β1

d`(β2)
2

dη2
(η(α2)

2 )δα3β3 , (4.50b)

D
(3)
σ(α)σ(β) := 2(1 + η

(α1)
1 )

(1− η(α2)
2 )(1− η(α3)

3 )
d`(β1)

1
dη1

(η(α1)
1 )δα2β2δα3α3

+ 1 + η
(α2)
2

1− η(α3)
3

δα1β1

d`(β2)
2

dη2
(η(α2)

2 )δα3β3 + δα1β1δα2β2

d`(β3)
3

dη3
(η(α3)

3 ), (4.50c)

and

R
(1)
σf (α)σ(β) := `

(β1)
1 (η(α1)

f1 )`(β2)
2 (−1)`(β3)

3 (η(α2)
f2 ), (4.51a)

R
(2)
σf (α)σ(β) := `

(β1)
1 (1)`(β2)

2 (η(α1)
f1 )`(β3)

3 (η(α2)
f2 ), (4.51b)

R
(3)
σf (α)σ(β) := `

(β1)
1 (−1)`(β2)

2 (η(α1)
f1 )`(β3)

3 (η(α2)
f2 ), (4.51c)

R
(4)
σf (α)σ(β) := `

(β1)
1 (η(α1)

f1 )`(β2)
2 (η(α2)

f2 )`(β3)
3 (−1). (4.51d)

Defining the diagonal matrices W and B (ζ) as in (3.3) using the quadrature weights in
Sections 4.2.2 and 4.2.3, we then have the following three-dimensional analogue of Theorem 4.1.

Theorem 4.2. Assuming that the one-dimensional quadrature rules in (4.37) satisfy (2.34)
with τ

(0,0)
1 ≥ 2q1, τ (0,0)

2 ≥ 2q2 + 1, and either τ
(0,0)
3 ≥ 2q3 + 1 or τ

(1,0)
3 ≥ 2q3, and that

the facet quadrature rules in (4.43) satisfy (4.44) with τ
(0,0)
f1 ≥ 2 max(q1, q2) and either

τ
(0,0)
f2 ≥ 2 max(q2, q3) + 1 or τ (1,0)

f2 ≥ 2 max(q2, q3), the matrices D(1), D(2), and D(3) given
as in (4.50a) to (4.50c) are diagonal-norm SBP operators of degree q approximating ∂/∂ξ1,
∂/∂ξ2, and ∂/∂ξ3, respectively, with boundary operators given as in (2.45).

Proof. The proof is similar to that of Theorem 4.1, with the accuracy conditions in (2.41)
resulting from expressing the action of the operators in (4.50) and (4.51) as in (4.23) and using
Lemma 4.2. The conditions in (2.42) then follow from the fact that polynomials of degree
q are extrapolated exactly to the boundaries as in (2.46) as a consequence of Lemma 4.2
and the fact that facet quadrature rules satisfying the stated assumptions are exact for all
polynomials within the corresponding trace space P2q(Γ̂(ζ)), which can be shown by expressing
such polynomials in terms of the (ηf1, ηf2) coordinate system in a similar manner to (4.11).



Chapter 4. Tensor-product SBP operators on the reference triangle and tetrahedron 54

To demonstrate that the SBP property holds in the ξ1 direction, we define Q(1) := WD(1),
which, noting the cancellation of the factor (1− η(α2)

2 )(1− η(α3)
3 ) in the denominator of (4.50a),

results in

Q
(1)
σ(α)σ(β) =

∫ 1

−1
`

(α1)
1

d`(β1)
1

dη1
dη1︸ ︷︷ ︸

τ
(0,0)
1 ≥ 2q1−1

∫ 1

−1
`

(α2)
2 `

(β2)
2 dη2︸ ︷︷ ︸

τ
(0,0)
2 ≥ 2q2

∫ 1

−1

1− η3

2 `
(α3)
3 `

(β3)
3 dη3︸ ︷︷ ︸

τ
(0,0)
3 ≥ 2q3+1 or τ (1,0)

3 ≥ 2q3

, (4.52)

where the dependence of the Lagrange polynomials on the variable of integration has been
suppressed within such one-dimensional integral factors for a clearer presentation, and we
have used the cardinal property of the Lagrange basis and the polynomial exactness of the
quadrature rules to obtain such an expression. Expressing the boundary operator E (1) given
in (2.45) in terms of the interpolation/extrapolation operators in (4.51) as well as the outward
unit normal vectors in (4.32) and using the exactness of the facet quadrature rules, we obtain

E
(1)
σ(α)σ(β) = `

(α1)
1 `

(β1)
1

∣∣∣1
−1

∫ 1

−1
`

(α2)
2 `

(β2)
2 dηf1︸ ︷︷ ︸

τ
(0,0)
f1 ≥ 2q2

∫ 1

−1

1− ηf2

2 `
(α3)
3 `

(β3)
3 dηf2︸ ︷︷ ︸

τ
(0,0)
f2 ≥ 2q3+1 or τ (1,0)

f2 ≥ 2q3

. (4.53)

The SBP property in the ξ1 direction then follows from applying integration by parts to the
first factor in (4.52). Similarly, defining Q(2) := WD(2) results in

Q
(2)
σ(α)σ(β) =

∫ 1

−1

1 + η1

2 `
(α1)
1

d`(β1)
1

dη1
dη1︸ ︷︷ ︸

τ
(0,0)
1 ≥ 2q1

∫ 1

−1
`

(α2)
2 `

(β2)
2 dη2︸ ︷︷ ︸

τ2≥ 2q2

∫ 1

−1

1− η3

2 `
(α3)
3 `

(β3)
3 dη3︸ ︷︷ ︸

τ
(0,0)
3 ≥ 2q3+1 or τ (1,0)

3 ≥ 2q3

+
∫ 1

−1
`

(α1)
1 `

(β1)
1 dη1︸ ︷︷ ︸

τ
(0,0)
1 ≥ 2q1

∫ 1

−1

1− η2

2 `
(α2)
2

d`(β2)
2

dη2
dη2︸ ︷︷ ︸

τ
(0,0)
2 ≥ 2q2

∫ 1

−1

1− η3

2 `
(α3)
3 `

(β3)
3 dη3︸ ︷︷ ︸

τ
(0,0)
3 ≥ 2q3+1 or τ (1,0)

3 ≥ 2q3

(4.54)

and

E
(2)
σ(α)σ(β) = `

(α1)
1 (1)`(β1)

1 (1)
∫ 1

−1
`

(α2)
2 `

(β2)
2 dηf1︸ ︷︷ ︸

τ
(0,0)
f1 ≥ 2q2

∫ 1

−1

1− ηf2

2 `
(α3)
3 `

(β3)
3 dηf2︸ ︷︷ ︸

τ
(0,0)
f2 ≥ 2q3+1 or τ (1,0)

f2 ≥ 2q3

− `(α2)
2 (−1)`(β2)

2 (−1)
∫ 1

−1
`

(α1)
1 `

(β1)
1 dηf1︸ ︷︷ ︸

τ0,0
f1 ≥ 2q1

∫ 1

−1

1− ηf2

2 `
(α3)
3 `

(β3)
3 dηf2︸ ︷︷ ︸

τ
(0,0)
f2 ≥ 2q3+1 or τ (1,0)

f2 ≥ 2q3

,

(4.55)

with the SBP property in the ξ2 direction resulting from the application of integration by
parts and the product rule to (4.54). Finally, one can similarly show that the SBP property
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in the ξ3 direction follows from expressing the entries of Q(3) := WD(3) as

Q
(3)
σ(α)σ(β) =

∫ 1

−1

1 + η1

2 `
(α1)
1

d`(β1)
1

dη1
dη1︸ ︷︷ ︸

τ
(0,0)
1 ≥ 2q1

∫ 1

−1
`

(α2)
2 `

(β2)
2 dη2︸ ︷︷ ︸

τ2≥ 2q2

∫ 1

−1

1− η3

2 `
(α3)
3 `

(β3)
3 dη3︸ ︷︷ ︸

τ
(0,0)
3 ≥ 2q3+1 or τ (1,0)

3 ≥ 2q3

+
∫ 1

−1
`

(α1)
1 `

(β1)
1 dη1︸ ︷︷ ︸

τ
(0,0)
1 ≥ 2q1

∫ 1

−1

(1− η2)(1 + η2)
4 `

(α2)
2

d`(β2)
2

dη2
dη2︸ ︷︷ ︸

τ
(0,0)
2 ≥ 2q2+1

∫ 1

−1

1− η3

2 `
(α3)
3 `

(β3)
3 dη3︸ ︷︷ ︸

τ
(0,0)
3 ≥ 2q3+1 or τ (1,0)

3 ≥ 2q3

+
∫ 1

−1
`

(α1)
1 `

(β1)
1 dη1︸ ︷︷ ︸

τ
(0,0)
1 ≥ 2q1

∫ 1

−1

1− η2

2 `
(α2)
2 `

(β2)
2 dη2︸ ︷︷ ︸

τ
(0,0)
2 ≥ 2q2+1

∫ 1

−1

(1− η3)2

4 `
(α3)
3

d`(β3)
3

dη3
dη3︸ ︷︷ ︸

τ
(0,0)
3 ≥ 2q3+1 or τ (1,0)

3 ≥ 2q3

(4.56)

and those of the corresponding boundary operator as

E
(3)
σ(α)σ(β) = `

(α1)
1 (1)`(β1)

1 (1)
∫ 1

−1
`

(α2)
2 `

(β2)
2 dηf1︸ ︷︷ ︸

τ
(0,0)
f1 ≥ 2q2

∫ 1

−1

1− ηf2

2 `
(α3)
3 `

(β3)
3 dηf2︸ ︷︷ ︸

τ
(0,0)
f2 ≥ 2q3+1 or τ (1,0)

f2 ≥ 2q3

− `(α3)
3 (−1)`(β3)

3 (−1)
∫ 1

−1
`

(α1)
1 `

(β1)
1 dηf1︸ ︷︷ ︸

τ
(0,0)
f1 ≥ 2q1

∫ 1

−1

1− ηf2

2 `
(α2)
2 `

(β2)
2 dηf2︸ ︷︷ ︸

τ
(0,0)
f2 ≥ 2q2+1 or τ (1,0)

f2 ≥ 2q2

.

(4.57)

Since, for l = 1, l = 2, and l = 3, the entries of the matrices Q(l) := WD(l) satisfy

Q
(l)
σ(α)σ(β) = E

(l)
σ(α)σ(β) −Q

(l)
σ(β)σ(α) (4.58)

and W is SPD as the one-dimensional volume quadrature weights are positive and there are
no nodes at η2 = 1 nor at η3 = 1, the SBP property is then satisfied in the ξ1, ξ2, and ξ3

directions, and, hence, the operators in (4.50) fulfil the requirements of Definition 2.3.

4.3 Chapter summary

This chapter describes a methodology for the construction of spectral-element operators of
arbitrary order on the reference triangle and tetrahedron which are sparse, satisfy the SBP
property, and possess a tensor-product structure supporting the use of sum-factorization
algorithms for matrix-free operator evaluation. Employing the polynomial exactness of tensor-
product interpolation in collapsed coordinates and careful choices of Gaussian quadrature
rules for volume and facet integration, we establish conditions under which the proposed
operators satisfy the conditions of Definition 2.3 and are therefore suitable for use within
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spatial discretizations based on SBP operators for simplicial elements. The following two
chapters will discuss the formulation, analysis, and implementation of such discretizations,
in which we will exploit the operators’ tensor-product structure and sparsity as well as the
summation-by-parts property to obtain efficient algorithms which are provably stable for
linear and nonlinear problems on curved triangular and tetrahedral unstructured grids.



Chapter 5

Energy-stable tensor-product discontinuous
spectral-element methods on curved triangles
and tetrahedra

In this chapter, which is based on the content of Papers II and III as well as portions of Paper
IV, we will employ the SBP operators introduced in Chapter 4 within a skew-symmetric
formulation in order to construct efficient DSEMs curved triangular and tetrahedral elements
which are discretely conservative, free-stream preserving, as well as energy stable for the
linear advection equation. The fundamental aspects of such discretizations are introduced in
Section 5.1, followed by an analysis in Section 5.2 based on the general framework introduced
in Chapter 3. We describe the efficient implementation of the proposed schemes in Section 5.3.

5.1 Energy-stable discontinuous spectral-element formulation

This section describes several important numerical techniques which are employed in synergy
to construct the proposed schemes, including the approximation of the metric terms in con-
servative curl form, the use of tensor-product polynomial expansions in collapsed coordinates,
the discretization in skew-symmetric form using tensor-product SBP operators on the triangle
or tetrahedron, and the weight-adjusted approximation of the inverse mass matrix.

5.1.1 Approximation of the metric terms in conservative curl form

Considering a Lagrange basis {`(i)
pg }i∈{1:Npg} for Ppg(Ω̂) satisfying `(i)

pg (ξ(j)
pg ) = δij on the nodes

{ξ(i)
pg }i∈{1:Npg} ⊂ Ω̂, we can construct a polynomial mapping X(κ) ∈ [Ppg(Ω̂)]d from the

reference triangle or tetrahedron to each physical element as

X(κ)(ξ) :=
Npg∑
i=1
x(κ,i)
pg `(i)

pg (ξ), (5.1)

57
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where {x(κ,i)
pg }i∈{1:Npg} are the prescribed physical positions of the mapping nodes. To ensure

a watertight mesh, we assume that the mapping nodes contain a subset of nodes on each facet
Γ̂(ζ) ⊂ ∂Ω̂ which are unisolvent for the corresponding trace space Ppg(Γ̂(ζ)), thus resulting
in continuity at element interfaces. Considering a mapping using polynomials of degree
pg as in (5.1), the metric terms are polynomials of degree pg − 1 in two dimensions and
degree 2pg − 2 in three dimensions. Since operations such as differentiation using SBP
operators are exact for polynomials of at most degree q, we cannot expect that a discrete
analogue of the metric identities in (2.12) will hold unless pg ≤ q + 1 in two dimensions or
pg ≤ bq/2c + 1 in three dimensions. To circumvent this requirement for a subparametric
mapping in three-dimensional case, we use an adaptation by Chan and Wilcox [133, Sect.
5] of Kopriva’s approximation of the metric terms in conservative curl form [134, Eq. (36)],
which is itself based on techniques introduced by Thomas and Lombard [135]. To obtain
such an approximation, we introduce a Lagrange basis {`(i)

q+1}i∈{1:Nq+1} for Pq+1(Ω̂) associated
with a set of nodes {ξ(i)

q+1}i∈{1:Nq+1} ⊂ Ω̂ and construct the polynomial interpolants

r
(κ,1)
q+1 (ξ) :=

Nq+1∑
i=1

X
(κ)
3 (ξ(i)

q+1)∇ξX(κ)
2 (ξ(i)

q+1)`(i)
q+1(ξ), (5.2a)

r
(κ,2)
q+1 (ξ) :=

Nq+1∑
i=1

X
(κ)
3 (ξ(i)

q+1)∇ξX(κ)
1 (ξ(i)

q+1)`(i)
q+1(ξ), (5.2b)

r
(κ,3)
q+1 (ξ) :=

Nq+1∑
i=1

X
(κ)
1 (ξ(i)

q+1)∇ξX(κ)
2 (ξ(i)

q+1)`(i)
q+1(ξ). (5.2c)

The functions r(κ,m)
q+1 ∈ [Pq+1(Ω̂)]d are used to define the matrix of approximate metric terms

G(κ)(ξ) :=
[
−∇ξ × r(κ,1)

q+1 (ξ), ∇ξ × r(κ,2)
q+1 (ξ), ∇ξ × r(κ,3)

q+1 (ξ)
]T
, (5.3)

which has entries of degree q and satisfies (2.12) by construction. Since using (5.3) with the
exact normal vector violates (2.14), we then use the matrix of approximate metric terms in
(5.3) to compute the normal vector and surface element approximately as

n(κ,ζ)(X(κ)(ξ)) := G(κ)(ξ)Tn̂(ζ)

‖G(κ)(ξ)Tn̂(ζ)‖
, J (κ)(ξ) := ‖G(κ)(ξ)Tn̂(ζ)‖. (5.4)

If the analytically defined mesh is watertight and the nodes used for the interpolants in (5.2)
define a continuous approximation space, the approximate normals computed as in (5.4) then
remain equal and opposite at element interfaces (see, for example, [133, Theorem 5]).

Remark 5.1. We will demonstrate numerically in Chapter 7 that computing the outward
unit normal vector as in (5.4) using the design-order metric approximation in (5.3) results in
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optimal rates of convergence for smooth periodic problems. However, further investigation is
required regarding the effectiveness of such an approach in the context of the imposition of
wall boundary conditions, which have been shown in recent work by Navah and Nadarajah
[136] as well as Craig Penner and Zingg [137] to be sensitive to the method used to compute
the wall normal.

5.1.2 Nodal and modal tensor-product expansions

In order to discretize systems of conservation laws in the form of (2.13) on the reference
element, we can approximate the solution and flux components in collapsed coordinates using
the tensor-product expansions in (4.10) and (4.38) as

U(X(κ)(χ(η)), t) ≈
q1∑

α1=0
· · ·

qd∑
αd=0

u
(h,κ)
σ(α) (t)`(α1)

1 (η1) · · · `(αd)
d (ηd), (5.5a)

Fm(U(X(κ)(χ(η)), t)) ≈
q1∑

α1=0
· · ·

qd∑
αd=0

Fm(u(h,κ)
σ(α) (t))`(α1)

1 (η1) · · · `(αd)
d (ηd). (5.5b)

In the above, the vector u(h,κ)
σ(α) (t) ∈ RNc contains the solution variables evaluated as in (3.19)

in terms of the nodal solution vector u(h,κ,e)(t) ∈ RNq at each of the tensor-product volume
quadrature nodes, which are given generically (i.e. for either triangles or tetrahedra) by

ξ(σ(α)) := χ(η(αd)
1 , . . . , η

(αd)
d ). (5.6)

Although it is often advantageous from an efficiency standpoint to collocate the solution
degrees of freedom at the volume quadrature points by directly evolving u(h,κ,e)(t) as in (3.42),
such an approach presents two disadvantages in the present context, which we list below.

• The number of tensor-product quadrature nodes Nq required for a collapsed-coordinate
formulation using SBP operators of degree q can be much larger than the cardinality
of a total-degree polynomial basis for the space Pq(Ω̂), thus requiring more degrees of
freedom than would otherwise be needed to achieve a given order of accuracy.

• The collapsed coordinate system and the resulting rational approximation space in
reference coordinates introduces a clustering of resolution near the singularity, and
therefore limits the maximum stable time step size for explicit schemes.1

We therefore propose the use of a modal approach in which a basis {φ(i)}i∈{1:Np} for Pp(Ω̂)
with p ≤ q is used to represent each solution variable on the reference element in terms of the

1Quoting Dubiner [55] concerning the time step restriction for tensor-product approximations in collapsed
coordinates, “[resolution] is a good thing, but this is a case of too much of a good thing.”
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modal expansion coefficients ũ(h,κ,e)(t) ∈ RNp as in (2.20). Such an expansion is evaluated at
each node using the generalized Vandermonde matrix in (3.4) to obtain the nodal expansion
coefficients u(h,κ)(t) = V ũ(h,κ,e)(t) used to approximate the solution and flux components as
in (5.5a). Since any polynomial V ∈ Pp(Ω̂) with p ≤ q admits a unique expansion in terms of
the tensor-product Lagrange basis functions in (4.20) and (4.49), the mapping in (3.17) is
injective and hence V is of rank Np (i.e. full column rank) as required for Assumption 3.1,
regardless of the chosen basis for Pp(Ω̂). We must, however, carefully choose such a basis
to ensure that the cost of applying V is minimized and the tensor-product structure of the
discretization is preserved.

5.1.3 Proriol–Koornwinder–Dubiner basis functions

In order to construct polynomial bases on the triangle and tetrahedron for which operations
such as (3.17) are amenable to sum factorization, we follow [110, Section 3.2] and define

ψ
(α1)
1 (η1) :=

√
2P (0,0)

α1 (η1) (5.7a)
ψ

(α1,α2)
2 (η2) := (1− η2)α1P (2α1+1,0)

α2 (η2), (5.7b)
ψ

(α1,α2,α3)
3 (η3) := 2(1− η3)α1+α2P (2α1+2α2+2,0)

α3 (η3), (5.7c)

in terms of the normalized Jacobi polynomials, which are defined in Section 2.4. The
Proriol–Koornwinder–Dubiner (PKD) polynomials [55, 138, 139] are then given in collapsed
coordinates on the reference triangle as

φ(π(α))(χ(η)) := ψ
(α1)
1 (η1)ψ(α1,α2)

2 (η2), (5.8)

and on the reference tetrahedron as

φ(π(α))(χ(η)) := ψ
(α1)
1 (η1)ψ(α1,α2)

2 (η2)ψ(α1,α2,α3)
3 (η3), (5.9)

where we order the multi-indices α ∈ P(p) using the bijection π : P(p)→ {1 : Np}. Although
the generalized Vandermonde matrix V resulting from the evaluation of such basis functions
at the nodes in (5.6) cannot be expressed as a standard Kronecker product, the “warped”
tensor-product structure of the PKD bases nevertheless allows for such an operator (as well
as its transpose) to be applied through sum factorization, as described, for example, in [110,
Sections 4.1.6.1 and 4.1.6.2]. Moreover, such bases are orthonormal with respect to the L2

inner product on the reference element, satisfying
∫

Ω̂
φ(i)(ξ)φ(j)(ξ) dξ = δij, (5.10)
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resulting in the reference mass matrix M := V TWV being the identity matrix if the
quadrature rule in (2.44) is of degree τ ≥ 2p. As will be discussed in Section 5.3, the proposed
algorithms exploit both the tensor-product structure and the orthonormality of the basis.

5.1.4 Skew-symmetric discretization using summation-by-parts operators

Using the nodal basis functions defined in (4.20) and (4.49) on the reference triangle and
tetrahedron, respectively, the right-hand side of (5.5b) can be expressed in terms of ξ = χ(η)
as

F (h,κ)
m (ξ, t) :=

Nq∑
i=1

Fm(u(h,κ)
i (t))`(i)(ξ). (5.11)

Inserting such an approximation into (2.19) and applying integration by parts, the product
rule, and the metric identities in (2.12) to half of the volume term on the right-hand side, we
obtain a skew-symmetric variational formulation, which is given by

∫
Ω̂
V (ξ)J (κ)(ξ)∂U

(h,κ)(ξ, t)
∂t

dξ =

1
2

d∑
l=1

∫
Ω̂

(
∂V (ξ)
∂ξl

d∑
m=1

G
(κ)
lm (ξ)F (h,κ)

m (ξ, t)− V (ξ)
d∑

m=1
G

(κ)
lm (ξ)∂F

(h,κ)
m (ξ, t)
∂ξl

)
dξ

−
Nf∑
ζ=1

∫
Γ̂(ζ)

V (ξ)J (κ,ζ)(ξ)
(
F (∗,κ,ζ)(ξ, t)− 1

2

d∑
m=1

n(κ,ζ)
m (X(κ)(ξ))F (h,κ)

m (ξ, t)
)

dŝ.

(5.12)

Using the tensor-product quadrature rules introduced in Chapter 4 to approximate the
integrals in the above formulation, a nodal approximation within a rational function space is
then obtained by expanding the solution and test function in terms of the tensor-product
Lagrange basis {`(i)}i∈{1:Nq}, while a modal approximation within a total-degree polynomial
approximation space is recovered by expanding the solution and test function in terms of the
PKD basis {φ(i)}i∈{1:Np}. Such formulations are then given, respectively, by

WJ (κ) du(h,κ,e)(t)
dt = r(h,κ,e)(t), (5.13a)

V TWJ (κ)V
du(h,κ,e)(t)

dt = V Tr(h,κ,e)(t), (5.13b)

where we define

r(h,κ,e)(t) := 1
2

d∑
l=1

((
D(l)

)T
W

d∑
m=1

G(κ,l,m)f (κ,m,e)(t)−
d∑

m=1
G(κ,l,m)WD(l)f (κ,m,e)(t)

)

−
Nf∑
ζ=1

(
R(ζ)

)T
B (ζ)J (κ,ζ)

(
f (∗,κ,ζ,e)(t)− 1

2

d∑
m=1

N (κ,ζ,m)R(ζ)f (κ,m,e)(t)
) (5.14)



Chapter 5. Energy-stable tensor-product DSEMs on curved triangles and tetrahedra 62

in terms of the SBP operators introduced in Chapter 4 and recall the definitions of f (κ,m,e)(t) ∈
RNq and f (∗,κ,ζ,e)(t) ∈ RN

(ζ)
qf in (3.20) and (3.21), respectively.

5.1.5 Summation-by-parts operators on the physical element

To provide an alternative perspective which is useful for our analysis, we can group together
the terms which left-multiply the vector f (κ,m,e)(t) in (5.14) in order to obtain

r(h,κ,e)(t) =
d∑

m=1

(
Q(κ,m)

)T
f (κ,m,e)(t)−

Nf∑
ζ=1

(
R(ζ)

)T
B (ζ)J (κ,ζ)f (∗,κ,ζ,e)(t), (5.15)

which is of a similar form to (3.24), but involves the discretization of the volume terms using
the operator

Q(κ,m) := 1
2

d∑
l=1

(
G(κ,l,m)WD(l) −

(
D(l)

)T
WG(κ,l,m)

)
+ 1

2E
(κ,m), (5.16)

where we define

E (κ,m) :=
Nf∑
ζ=1

(
R(ζ)

)T
B (ζ)J (κ,ζ)N (κ,ζ,m)R(ζ). (5.17)

Although obtained from the variational formulation in (5.12), the matrices in (5.16) and (5.17)
are of the same form as those constructed in [97, Section 5]. Since the proposed tensor-
product SBP operators on the reference triangle or tetrahedron satisfy the assumptions of [97,
Theorem 9], it then follows that the differentiation matrix on the physical element given by

D(κ,m) :=
(
WJ (κ)

)−1
Q(κ,m) (5.18)

provides an O(hq) approximation to the partial derivative ∂/∂xm for sufficiently regular
functions and mesh sequences. Moreover, it is easy to show that the SBP property is satisfied
in physical space as

Q(κ,m) +
(
Q(κ,m)

)T
= E (κ,m), ∀m ∈ {1 : d}. (5.19)

Applying the SBP property on the reference element to (5.16) using (3.6), we then obtain

Q(κ,m) = 1
2

d∑
l=1

W
(
G(κ,l,m)D(l) +D(l)G(κ,l,m)

)

+ 1
2

Nf∑
ζ=1

(
R(ζ)

)T
B (ζ)

(
N (κ,ζ,m)R(ζ) −

d∑
l=1

n̂
(ζ)
l R(ζ)G(κ,l,m)

)
,

(5.20)
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where the first line corresponds to the more familiar splitting of the derivative operator (see,
for example, Kopriva and Gassner [74] or Nordström [72]) as

J (κ)(ξ) ∂V
∂xm

(X(κ)(ξ)) = 1
2

d∑
l=1

(
G

(κ)
lm (ξ)∂V (X(κ)(ξ))

∂ξl
+ ∂

∂ξl

(
G

(κ)
lm (ξ)V (X(κ)(ξ))

))
, (5.21)

which holds at the continuous level for smooth functions when G(κ)(ξ) contains the exact
metric terms, and the second line of (5.20) can be interpreted as a correction term which
vanishes for diagonal-E SBP operators.

5.1.6 Weight-adjusted approximation of the inverse mass matrix

Even when using orthonormal bases on the reference element, the mass matrix appearing
on the left-hand side of (5.13b) is dense when the mapping from the reference element to
the physical element is not affine, and its inverse lacks a tensor-product structure amenable
to sum factorization. Obtaining the time derivative for such a scheme in the context of
explicit temporal integration thus requires either the storage and application of a non-tensorial
factorization or inverse, or, otherwise, the solution of a dense Np by Np linear system, for each
curved element in the mesh. To obtain a fully explicit formulation for the time derivative, we
use a weight-adjusted approximation given by

(
V TWJ (κ)V

)−1
≈M−1V TW

(
J (κ)

)−1
V M−1 =:

(
M̃ (κ)

)−1
. (5.22)

The above approximation was initially proposed by Chan et al. [101] for the purpose of
reducing storage requirements for curved elements, and an a priori analysis reveals that the
corresponding weight-adjusted projection differs from the standard L2 projection by O(hp+2)
for sufficiently regular functions and mesh sequences, thereby introducing an error which is
at least one order higher than that of the discretization itself and is typically negligible in
practice [133, Sections 4.3 and 6.1]. Besides reducing storage, however, the weight-adjusted
approximation also preserves the tensor-product operator structure which would otherwise be
lost by taking the inverse of the mass matrix. The time derivative for the resulting scheme
can then be obtained explicitly as

dũ(h,κ,e)(t)
dt =

(
M̃ (κ)

)−1
V Tr(h,κ,e)(t), (5.23)

where we can exploit sum factorization in the application of the operators V and V T in (5.22).
While the formulation in (5.23) is not, in general, discretely conservative with respect to the
quadrature rule defined by the diagonal entries of W as in (2.44), we restore conservation using
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a technique proposed by Chan and Wilcox [133, Lemma 2]. In the context of a mapping in
the form of (5.1), such a modification involves approximating the determinant of the mapping
Jacobian, which is of degree 2pg − 2 in two dimensions and 3pg − 3 in three dimensions, by
an interpolant of degree pg given in terms of the nodal basis in (5.1) as

J (κ)(ξ) :=
Npg∑
i=1

det(J (κ)(ξ(i)
pg ))`(i)

pg (ξ), (5.24)

and using such an approximation to define J (κ) in (5.22), noting that such a modification
does not affect the (approximate) metric terms G(κ)(ξ) used to compute r(h,κ,e)(t) in (5.23).

5.2 Analysis

We now begin our theoretical analysis of the schemes constructed in the previous section,
which will make use of several techniques introduced in Chapter 3 within the context of
standard DG and FR methods. Although the focus of this chapter is on discretizations using
the operators constructed in Chapter 4, the analysis applies to nodal and modal DSEMs
using any set of multidimensional SBP operators satisfying the following assumption.

Assumption 5.1. The matrices D(l) are multidimensional diagonal-norm SBP operators
of degree q ≥ p on the reference element, satisfying the conditions of Definition 2.3 with
boundary operators given as in (2.45) in terms of diagonal positive-semidefinite matrices B (ζ)

and interpolation/extrapolation operators R(ζ) satisfying the accuracy conditions in (2.46).

We will also invoke Assumption 3.3 in our analysis, which could, at first sight, appear to be
somewhat restrictive in the tetrahedral case due to the asymmetry of the tensor-product facet
quadrature rules described in Section 4.2.3. However, through the use of simple preprocessing
algorithms (see, for example, Sherwin and Karniadakis [57, Section 2.3] or Warburton et
al. [140]), a suitable orientation can be defined for the local coordinate system on each
element so as to obtain matching facet quadrature node positions in physical space at a
cost scaling linearly with the number of elements in the mesh. Using such techniques, the
proposed operators can be used with standard mesh generation tools without the need for
nonconforming interface procedures. Otherwise, mortar-based techniques similar to those
introduced in [130] could be employed in order to enable the use of symmetric nodal sets at
element interfaces, thereby eliminating the need for a preprocessing step, although such an
approach would increase the cost of applying the interpolation/extrapolation operators.
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5.2.1 Discrete metric identities and free-stream preservation

Although polynomials are not necessarily differentiated exactly in physical space by the
split-form derivative operators in (5.18) when the mapping X(κ) is not affine, we will require
that constants lie within the nullspace of the physical SBP operator, a property which can
be ensured with the following lemma.

Lemma 5.1. Let Assumption 5.1 hold and assume that the metric terms, whether computed
exactly or approximately as in (5.3), satisfy G(κ)

lm ∈ Pq(Ω̂) as well as the metric identities in
(2.12) and that the normals are computed using such metric terms as in (5.4). Then, the
operators in (5.16) satisfy the following discrete metric identities:

Q(κ,m)1(Nq) = 0(Nq), ∀m ∈ {1 : d}, ∀κ ∈ {1 : Ne}. (5.25)

Proof. The proof follows similarly to that of [97, Theorem 6], where we use the SBP property
in (3.6) to obtain (5.20), where applying such an operator to a vector of ones results in

Q(κ,m)1(Nq) = 1
2 W

(
d∑
l=1

G(κ,l,m)D(l)1(Nq) +
d∑
l=1

D(l)G(κ,l,m)1(Nq)
)

+ 1
2

Nf∑
ζ=1

(
R(ζ)

)T
B (ζ)

(
N (κ,ζ,m)R(ζ)1(Nq) −

d∑
l=1

n̂
(ζ)
l R(ζ)G(κ,l,m)1(Nq)

)
.

(5.26)

The first term within the parentheses on the first line then vanishes due to the fact that
D(l)1(Nq) = 0(Nq) holds under Assumption 3.1, while for the second term we can use exactness
of the derivative operators for G(κ)

lm ∈ Pq(Ω̂) as well as the metric identities in (2.12) to obtain

d∑
l=1

D(l)G(κ,l,m)1(Nq) =
d∑
l=1

D(l)
[
G

(κ)
lm (ξ(1)), . . . , G(κ)

lm (ξ(Nq))
]T

=
d∑
l=1

[
∂G

(κ)
lm

∂ξl
(ξ(1)), . . . , ∂G

(κ)
lm

∂ξl
(ξ(Nq))

]T

= 0(Nq).

(5.27)

Similarly, we can use the exactness of the interpolation/extrapolation operators for G(κ)
lm ∈

Pq(Ω̂) as well as the fact that the exact or approximate normals satisfy (2.14) to obtain

d∑
l=1

n̂
(ζ)
l R(ζ)G(κ,l,m)1(Nq) =

d∑
l=1

n̂
(ζ)
l R(ζ)

[
G

(κ)
lm (ξ(1)), . . . , G(κ)

lm (ξ(Nq))
]T

=


J (κ,ζ)(ξ(ζ,1))n(κ,ζ)(ξ(ζ,1))

...
J (κ,ζ)(ξ(ζ,N(ζ)

qf
))n(κ,ζ)(ξ(ζ,N(ζ)

qf
))


= N (κ,ζ,m)R(ζ)1(Nq),

(5.28)
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where we have used R(ζ)1(Nq) = 1(N(ζ)
qf

) to obtain the last line, resulting in a cancellation
on the second line of (5.26). Using the fact that the volume and facet contributions to the
right-hand side of (5.26) are each zero, we therefore obtain (5.25).

Remark 5.2. While we obtain the discrete metric identities by using the fact that the volume
and facet contributions to (5.26) individually vanish when the metric terms and normals are
approximated using the conservative curl form described in Section 5.1.1, Crean et al. take a
different approach in [97], solving quadratic optimization problems to obtain approximate
metric terms and normals for which the volume and facet contributions to the metric identities
cancel, but do not necessarily vanish individually.

Invoking the assumptions of a conforming mesh and a consistent numerical flux, we can
show that the discrete metric identities imply that a uniform solution state remains constant
in time. Such a property, which is known as free-stream preservation in the context of fluid
dynamics, is established with the following theorem.

Theorem 5.1. Let Assumption 3.3 hold and assume that the discrete metric identities in
(5.25) are satisfied and that the numerical flux satisfies the consistency condition in (2.23b).
For any uniform solution state satisfying the boundary conditions, the right-hand side given
by (5.14) then vanishes as

r(h,κ,e)(t) = 0(Nq), ∀ e ∈ {1 : Nc}, ∀κ ∈ {1 : Ne}, (5.29)

such that the solutions to (5.13a), (5.13b), and (5.23) remain constant in time.

Proof. Using the equivalent formulation in (5.15), we can use the SBP property in physical
space given by (5.19) to obtain an equivalent strong formulation as

r(h,κ,e)(t) = −
d∑

m=1
Q(κ,m)f (κ,m,e)(t)

−
Nf∑
ζ=1

(
R(ζ)

)T
B (ζ)

(
J (κ,ζ)f (∗,κ,ζ,e)(t)−

d∑
m=1

N (κ,ζ,m)R(ζ)f (κ,m,e)(t)
)
.

(5.30)

Since the physical flux components in (2.1a) depend only on the solution variables and not,
for example, on a spatially varying coefficient, the first term on the right-hand side of (5.30)
vanishes for any constant solution when the metric identities in (5.25) are satisfied. The
second term then vanishes due to the consistency of the numerical flux and the exactness of
the interpolation/extrapolation operators for constant functions. The entire right-hand side
of (5.30) then vanishes for all elements and all solution variables.
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5.2.2 Conservation

We demonstrate that the skew-symmetric nodal and modal formulations in (5.13a) are
locally and globally conservative with the following theorem, where, unlike in the proofs of
conservation for the DG and FR methods in Chapter 3, we must explicitly invoke the discrete
metric identities to ensure that the volume terms vanish.

Theorem 5.2. Under Assumptions 3.3 and 5.1, the skew-symmetric nodal and modal DSEM
formulations given by (5.13a) and (5.13b), respectively, with r(h,κ,e)(t) defined as in (5.14) are
locally and globally conservative, satisfying

d
dt
(
1(Nq)

)T
WJ (κ)u(h,κ,e)(t) = −

Nf∑
ζ=1

(
1(N(ζ)

qf
)
)T
B (ζ)J (κ,ζ)f (∗,κ,ζ,e)(t), (5.31a)

d
dt

Ne∑
κ=1

(
1(Nq)

)T
WJ (κ)u(h,κ,e)(t) = −

∑
Γ(κ,ζ)⊂∂Ω

(
1(N(ζ)

qf
)
)T
B (ζ)J (κ,ζ)f (∗,κ,ζ,e)(t), (5.31b)

when the discrete metric identities in (5.25) are satisfied and the numerical flux satisfies the
conservation property in (2.23a).

Proof. Multiplying both sides of the nodal formulation in (5.13a) from the left by (1(Nq))T or
multiplying both sides of the modal formulation in (5.13b) from the left by 1 T, where, as in
Theorem 3.3, we define 1 ∈ RNp such that V 1 = 1(Nq), we obtain

d
dt
(
1(Nq)

)T
WJ (κ)u(h,κ,e)(t) =

(
1(Nq)

)T
r(h,κ,e)(t). (5.32)

Expressing r(h,κ,e)(t) as in (5.15), the right-hand side then becomes

(
1(Nq)

)T
r(h,κ,e)(t) =

d∑
m=1

(
Q(κ,m)1(Nq)

)T
f (κ,m,e)(t)−

Nf∑
ζ=1

(
R(ζ)1(Nq)

)T
B (ζ)J (κ,ζ)f (∗,κ,ζ,e)(t)

= −
Nf∑
ζ=1

(
1(N(ζ)

qf
)
)T
B (ζ)J (κ,ζ)f (∗,κ,ζ,e)(t), (5.33)

where Q(κ,m)1(Nq) = 0(Nq) and R(ζ)1(Nq) = 1(N(ζ)
qf

) are used to obtain the final equality. We
then obtain the statement of local conservation in (3.44), and the proof of global conservation
follows identically to that of Theorem 3.4.

The following theorem extends the above proof of conservation to the weight-adjusted
formulation in (5.23).

Theorem 5.3. Let Assumptions 3.3 and 5.1 hold, and assume that the quadrature rule
in (2.44) is of degree τ ≥ p + pg, where we use (5.24) to obtain J (κ) ∈ Ppg(Ω̂). The skew-
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symmetric weight-adjusted modal DSEM given by (5.23) with r(h,κ,e)(t) defined as in (5.14) is
then locally and globally conservative, satisfying (5.31a) and (5.31b) when the discrete metric
identities in (5.25) hold and the numerical flux satisfies the conservation property in (2.23a).

Proof. As with the standard (i.e. not weight-adjusted) modal formulation in (5.13b), we
multiply from the left by 1 T and use V 1 = 1(Nq) as well as (5.33) to obtain

d
dt1

TM̃ (κ)ũ(h,κ,e)(t) = −
Nf∑
ζ=1

(
1(N(ζ)

qf
)
)T
B (ζ)J (κ)f (∗,κ,ζ,e)(t), (5.34)

which is a statement of local conservation with respect to the weight-adjusted mass matrix.
Following [133, Lemma 2], we use the exactness of the quadrature for J (κ)U (h,κ)

e (·, t) ∈ Pp+pg(Ω̂)
to obtain

1 TM̃ (κ)ũ(h,κ,e)(t) =
∫

Ω̂
J (κ)(ξ)U (h,κ)

e (ξ, t) dξ

=
(
1(Nq)

)T
WJ (κ)u(h,κ,e)(t).

(5.35)

The remainder of the proof is then identical to those of Theorems 3.4 and 5.2.

5.2.3 Energy stability

While the standard DG and FR methods were shown in Chapter 3 to be energy stable for the
linear advection equation when the SBP property is satisfied and the mapping from reference
to physical coordinates is affine, the proposed skew-symmetric discretizations are energy
stable on curvilinear meshes, even when the integrals in (5.12) are not computed exactly
under the chosen quadrature rules. To prove this, we require the following lemma.

Lemma 5.2. Let r(h,κ)(t) denote the nodal right-hand side for the skew-symmetric formulation
in (5.14) applied to the constant-coefficient linear advection equation and assume that W is
diagonal. Any nodal solution vector u(h,κ)(t) ∈ RNq then satisfies (3.54).

Proof. Substituting f (κ,m)(t) = amu
(h,κ)(t) into (5.14) and multiplying from the left by

(u(h,κ)(t))T, we obtain

(
u(h,κ)(t)

)T
r(h,κ)(t) =−

d∑
m=1

am
(
u(h,κ)(t)

)T
S (κ,m)u(h,κ)(t)

+
Nf∑
ζ=1

d∑
m=1

am
2
(
u(h,κ)(t)

)T
B (ζ)N (κ,ζ,m)R(ζ)u(h,κ)(t) (5.36)

−
Nf∑
ζ=1

(
u(h,κ)(t)

)T(
R(ζ)

)T
B (ζ)J (κ,ζ)f (∗,κ,ζ)(t),
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where we define

S (κ,m) := 1
2

d∑
l=1

(
G(κ,l,m)WD(l) −

(
D(l)

)T
WG(κ,l,m)

)
. (5.37)

Since the matrix S (κ,m) defined above is skew-symmetric when W and G(κ,l,m) are both
diagonal, the first term on the right-hand side of (5.36) therefore vanishes, resulting in
(3.54).

Energy stability then follows from the following theorem, where in the case of the weight-
adjusted formulation, the solution energy is defined in terms of the weight-adjusted mass
matrix, which is the inverse of the matrix defined in (5.22).

Theorem 5.4. Let Assumptions 3.3 and 5.1 hold and assume that the numerical flux for
the constant-coefficient linear advection equation takes the form given in (3.58), where the
parameter λ ∈ R+

0 takes the same value on each side of an interior or periodic interface, and
that the (curvilinear) mapping from the reference element onto each physical element satisfies
(2.11). Defining the solution energy for the formulations in (5.13a) or (5.13b) as

Eh(t) := 1
2

Ne∑
κ=1

(
u(h,κ)(t)

)T
WJ (κ)u(h,κ)(t), (5.38)

and for the weight-adjusted formulation in (5.23) as

Eh(t) := 1
2

Ne∑
κ=1

(
ũ(h,κ)(t)

)T
M̃ (κ)ũ(h,κ)(t), (5.39)

such a scheme then satisfies a semi-discrete energy estimate in the form of (3.59) when applied
to the constant-coefficient linear advection equation.

Proof. For the formulation in (5.13a), we multiply from the left by (u(h,κ)(t))T and use the
fact that WJ (κ) is symmetric for a general curvilinear mapping when W is diagonal to obtain

1
2

d
dt
(
u(h,κ)(t)

)T
WJ (κ)u(h,κ)(t) =

(
u(h,κ)(t)

)T
r(h,κ)(t). (5.40)

The above relation is also obtained for the modal formulation in (5.13b) through multiplication
from the left by (ũ(h,κ)(t))T and using u(h,κ)(t) = V ũ(h,κ)(t), whereas for the weight-adjusted
formulation, we similarly have

1
2

d
dt
(
ũ(h,κ)(t)

)T
M̃ (κ)ũ(h,κ)(t) =

(
u(h,κ)(t)

)T
r(h,κ)(t). (5.41)

Using Lemma 5.2 on the right-hand side of (5.40) or (5.41), summing over all elements, and
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using the respective definitions of Eh(t) in (5.38) and (5.39), we then obtain the energy balance
in (3.62). The remainder of the proof therefore follows identically to that of Theorem 3.5.

5.3 Efficient implementation

In this section, we discuss the efficient implementation of the proposed skew-symmetric tensor-
product DSEMs on curved triangles and tetrahedra, particularly in conjunction with explicit
time integration. With the exception of the numerical flux evaluation, all operations are
entirely local to a given element, and can therefore be executed in parallel in a straightforward
manner. Several strategies for computing such local operations are described below.

5.3.1 Reference-operator algorithms

Expressing (5.14) in terms of operators on the reference element and separating the volume
and facet contributions, we can compute the nodal right-hand side as

r(h,κ,e)(t) =
d∑
l=1

d∑
m=1

((
D(l)

)T
[

1
2WG(κ,l,m)

]
f (κ,m,e)(t)−

[
1
2WG(κ,l,m)

]
D(l)f (κ,m,e)(t)

)

−
Nf∑
ζ=1

(
R(ζ)

)T
[
B (ζ)J (κ,ζ)

](
f (∗,κ,ζ,e)(t)−

d∑
m=1

[
1
2N

(κ,ζ,m)
]
R(ζ)f (κ,m,e)(t)

)
, (5.42)

where square brackets are used to denote operators which must be precomputed and stored for
each element, which in (5.42) are all diagonal for the proposed operators. For discretizations
on triangles and tetrahedra using non-tensorial operators, the reference operators D(l) and
R(ζ) are typically stored as dense matrices and applied, for example, using standard BLAS
operations. In the context of the proposed schemes, however, we have the additional option
of exploiting the tensor-product structure of such operators through sum factorization. To
obtain a further optimization in such cases, we redefine the following operators:

[
1
2WG(κ,l,m)

]
σ(α)σ(β)

← 1
2

d∑
k=1

[
(∇ηχ(η(α1)

1 , . . . , η
(αd)
d ))−1

]
lk
G

(κ)
km(ξ(σ(α)))ω(σ(α))δσ(α)σ(β),

[
D(l)

]
σ(α)σ(β)

← d`(βl)
l

dηl
(η(αl)
l )

∏
m∈{1:d}\{l}

δαmβm . (5.43)

These modifications combine the geometric factors arising from the transformations χ :
[−1, 1]d → Ω̂ and X(κ) : Ω̂ → Ω(κ), allowing for the volume contributions in (5.42) to be
evaluated in collapsed coordinates with an equivalent cost per element to that of a comparable
tensor-product discretization on curved quadrilaterals or hexahedra. To evaluate the time
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derivative for the nodal formulation, we simply left-multiply the right-hand-side vector
computed as in (5.42) by the inverse of the diagonal nodal mass matrix, resulting in

du(h,κ,e)(t)
dt =

[(
WJ (κ)

)−1
]
r(h,κ,e)(t). (5.44)

For the weight-adjusted modal formulation in (5.23), the time derivative can be computed
explicitly as

dũ(h,κ,e)(t)
dt = M−1V T

[
W
(
J (κ)

)−1
]
V M−1V Tr(h,κ,e)(t), (5.45)

where we recall that the application of M−1 can be avoided by choosing an orthonormal basis
and using a volume quadrature rule of degree 2p or higher. Since the use of the PKD basis
allows for V and V T to be applied using sum factorization, and all other operators are either
diagonal or possess a standard Kronecker-product structure, the number of operations required
for evaluating the time derivative in either (5.44) or (5.23) scales as O(pd+1), assuming in the
triangular case that q1, q2, and qf scale as O(p), and in the tetrahedral case that q1, q2, q3,
qf1, and qf2 scale as O(p). Asymptotically, this compares favourably to the O(p2d) complexity
of a standard (i.e. non-tensor-product) multidimensional scheme similarly employing O(pd)
volume quadrature nodes and O(pd−1) facet quadrature nodes. Furthermore, since the only
operators which must be stored for each element are diagonal, the storage requirements for
reference-operator algorithms scale with the number of quadrature nodes, that is, as O(pd).

5.3.2 Physical-operator algorithms

Whether or not sum factorization is employed, and whether a nodal or modal formulation
is chosen, the algorithms described in Section 5.3.1 all share the feature of avoiding the
precomputation and storage of dense operator matrices for each physical element. However,
provided that sufficient memory is available and that the latency associated with accessing
local operators from different memory locations for each element is not prohibitive, one has
the option of instead precomputing physical operator matrices, an approach which can be
competitive with sum factorization at lower polynomial degrees despite scaling asymptotically
as O(p2d). Through such an approach, the time derivative can then be obtained for the nodal
formulation as

du(h,κ,e)(t)
dt =

d∑
m=1

[(
WJ (κ)

)−1(
Q(κ,m)

)T
]
f (κ,m,e)(t)

−
Nf∑
ζ=1

[(
WJ (κ)

)−1(
R(ζ)

)T
B (ζ)J (κ,ζ)

]
f (∗,κ,ζ,e)(t),

(5.46)
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and for the modal formulation as

dũ(h,κ,e)(t)
dt =

d∑
m=1

[(
M̃ (κ)

)−1
V T

(
Q(κ,m)

)T
]
f (κ,m,e)(t)

−
Nf∑
ζ=1

[(
M̃ (κ)

)−1
V T

(
R(ζ)

)T
B (ζ)J (κ,ζ)

]
f (∗,κ,ζ,e)(t),

(5.47)

where, although we have used M̃ (κ) instead of M (κ) for consistency with (5.23), there is no
advantage in operation count (aside from that of precomputing the inverse) nor in storage to
using such an approximation for physical-operator algorithms.

5.4 Chapter summary

This chapter describes the application of the novel tensor-product SBP operators on the
reference triangle and tetrahedron introduced in Chapter 4 to the construction of efficient
skew-symmetric energy-stable discretizations on curvilinear unstructured grids. Nodal and
modal variants of the proposed approach are presented, the latter making use of a projection
onto an orthonormal basis for a total-degree polynomial space in order to circumvent the
explicit time step restriction resulting from the singular nature of the collapsed coordinate
transformation. We approximate the metric terms in conservative curl form in order to ensure
that the discrete metric identities are satisfied in three dimensions, and, in the case of the
modal approach, a weight-adjusted approximation is used to obtain fully explicit low-storage
algorithms of O(pd+1) time complexity, avoiding the inversion of a dense local mass matrix.
Proofs of free-stream preservation, conservation, as well as energy stability for the linear
advection equation are presented, and techniques for the efficient implementation of the
proposed schemes are described.



Chapter 6

Entropy-stable tensor-product discontinuous
spectral-element methods on curved triangles
and tetrahedra

In this chapter, which is based on the content of Paper IV, we detail how the SBP operators
described in Chapter 4 can be used to construct efficient entropy-stable DSEMs of any
order for nonlinear systems of conservation laws on curvilinear unstructured grids. Such
formulations extend the approach devised in Chapter 5 to entropy-stable schemes using
techniques introduced by Chan [99] as well as Chan and Wilcox [133]. We will focus on the
modal formulation due to the fact that the use of the PKD basis described in Section 5.1.3
together with the weight-adjusted approximation described in Section 5.1.6 allows for all
operators to be evaluated using efficient sum-factorization techniques of O(pd+1) complexity
without negatively affecting the explicit time step restriction.1 The proposed entropy-stable
schemes will be constructed so as to enable the use of the sum-factorization techniques
discussed in the previous chapter while additionally exploiting the sparsity of the SBP
operators described in Chapter 4 to reduce the number of required entropy-conservative two-
point flux evaluations. We introduce the essential components of such schemes in Section 6.1
and analyze the resulting formulations in Section 6.2. Finally, Section 6.3 describes how the
tensor-product structure and sparsity of the proposed tensor-product operators on triangles
and tetrahedra can be used to obtain efficient entropy-stable algorithms.

6.1 Entropy-stable discontinuous spectral-element formulation

Similarly to the energy-stable modal DSEMs described in Chapter 5, the formulations
described can be expressed in the form of (5.23) using the weight-adjusted inverse in (5.22),
where the metric terms are approximated using the conservative curl formulation in (5.3)

1This will be verified numerically in Chapter 7 through examination of the spectral radius of the
semi-discrete operator arising from the spatial discretization of the linear advection equation.

73



Chapter 6. Entropy-stable tensor-product DSEMs on curved triangles and tetrahedra 74

and the Jacobian determinant of the mapping is approximated as in (5.24). We will combine
such ingredients with an entropy projection, an entropy-conservative volume flux, an entropy-
stable interface flux, and a flux-differencing formulation to obtain efficient entropy-stable
discretizations on curved triangles and tetrahedra.

6.1.1 Entropy projection

We begin by considering a fundamental issue in the development of entropy-stable modal
DSEMs, which is the fact that the entropy variables may not lie within the approximation
space in which the solution is sought. As such, they cannot be taken as test functions in
the discrete variational formulation, a critical step in establishing entropy stability for such
schemes. To resolve this, entropy-stable modal formulations employ the entropy projection
procedure introduced in [99], referring to the approximation of the entropy variables as

We(U (h,κ)(ξ, t)) ≈
Np∑
i=1

w̃
(h,κ,e)
i (t)φ(i)(ξ), (6.1)

where, as in [133, Eq. (31)], we obtain the coefficients through a weight-adjusted projection as

w̃(h,κ,e)(t) :=
(
M̃ (κ)

)−1
V TWJ (κ)


We(u(h,κ)

1 (t))
...

We(u(h,κ)
Nq (t))

. (6.2)

Using the generalized Vandermonde matrix to evaluate the projected entropy variables at the
volume quadrature nodes as

w(h,κ,e)(t) := V w̃(h,κ,e)(t), (6.3)

we obtain

w
(h,κ)
i (t) :=


w

(h,κ,1)
i (t)

...
w

(h,κ,Nc)
i (t)

, w
(h,κ,ζ)
i (t) :=


[R(ζ)w(h,κ,1)(t)]i

...
[R(ζ)w(h,κ,Nc)(t)]i

. (6.4)

The conservative variables are then evaluated in terms of the projected entropy variables in
order to obtain the entropy-projected conservative variables as U(w(h,κ)

i (t)) and U(w(h,κ,ζ)
i (t)).

6.1.2 Entropy-conservative and entropy-stable flux functions

Next, we present the following definition of an entropy-conservative two-point flux, which is
an essential component of the entropy-stable methods described in this work.
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Definition 6.1. A continuously differentiable function F#
m : Υ × Υ → RNc is an entropy-

conservative two-point flux if it is symmetric and consistent with (2.1a), satisfying

F#
m(U−, U+) = F#

m(U+, U−), ∀U−, U+ ∈ Υ, (6.5a)
F#
m(U,U) = Fm(U), ∀U ∈ Υ, (6.5b)

and, recalling the definition of the flux potential in (2.7), the following condition holds:

(
W(U+)−W(U−)

)T
F#
m(U−, U+) = Ψm(W(U+))− Ψm(W(U−)), ∀U−, U+ ∈ Υ. (6.6)

First proposed in [85], the property in (6.6) is referred to in the literature as Tadmor’s
condition or the shuffle condition, and enables the chain rule to be circumvented when deriving
semi-discrete forms of bounds such as (2.8) for an entropy-stable discretization. At element
interfaces, we use entropy-stable or entropy-conservative directional numerical fluxes, for
which the following definition is introduced (see, for example, [98, Definitions 3.1 and 3.2]).

Definition 6.2. A conservative and consistent numerical flux F ∗ : Υ×Υ× Sd−1 → RNe is
entropy stable if, for any direction vector n ∈ Sd−1, the following condition is satisfied:

(
W(U+)−W(U−)

)T
F ∗(U−, U+,n) ≤

(
Ψ (W(U+))−Ψ (W(U−))

)
·n, ∀U−, U+ ∈ Υ. (6.7)

Such a numerical flux is entropy conservative if (6.7) holds as an equality for all arguments.

In this work, we employ a numerical interface flux consisting of an entropy-conservative
two-point flux in the normal direction augmented by a local Lax–Friedrichs dissipative term
(see, for example, Ranocha [141, Section 6.1]). Such a flux takes the form

F ∗(U−, U+,n) := F#(U−, U+,n)− 1
2Λ(U−, U+,n)(U+ − U−), (6.8)

where the entropy-conservative directional flux is given by

F#(U−, U+,n) :=
d∑

m=1
nmF

#
m(U−, U+), (6.9)

and Λ(U−, U+,n) ∈ R+ is an estimate of the maximum normal wave speed in the normal
direction to the interface. As in [99, 133], the arguments U− and U+ are taken in this work to
be the entropy-projected conservative variables, although we note that alternative interface
dissipation approaches have been proposed based on penalization of the jump in the entropy
variables, either through scalar dissipation (which is used, for example, in [93] and [97]) or
using matrix dissipation operators such as those proposed by Winters et al. [142].
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6.1.3 Flux-differencing formulation

In order to construct efficient entropy-stable formulations on curvilinear meshes, we take a
similar approach to Fisher [88, Section 4.5] and Gassner et al. [93, Appendix B] and evaluate
the averaged metric terms between pairs of volume quadrature nodes and pairs of volume
and facet quadrature nodes as

{{G(κ)
lm }}ij := 1

2[G(κ)(ξ(i)) +G(κ)(ξ(j))]lm, (6.10a)

{{J (κ,ζ)n(κ,ζ)
m }}ij := 1

2[G(κ)(ξ(i))Tn̂(ζ) +G(κ)(ξ(ζ,j))Tn̂(ζ)]m, (6.10b)

which define the matrices {{G(κ)
lm }} ∈ RNq×Nq and {{J (κ,ζ)n(κ,ζ)

m }} ∈ RNq×N(ζ)
qf , respectively.

The entropy-conservative two-point fluxes are similarly computed between pairs of quadrature
nodes using the entropy-projected conservative variables as

F
(κ,m,e)
ij (t) := F#

me(U(w(h,κ)
i (t)),U(w(h,κ)

j (t))), (6.11a)
F

(κ,ζ,m,e)
ij (t) := F#

me(U(w(h,κ)
i (t)),U(w(h,κ,ζ)

j (t))), (6.11b)

defining the matrices F (κ,m,e)(t) ∈ RNq×Nq and F (κ,ζ,m,e)(t) ∈ RNq×N(ζ)
qf . Denoting the exterior

values of the entropy variables as w(h,κ,ζ,+)
i (t) ∈ RNc , we evaluate f (∗,κ,ζ,e)(t) ∈ RN

(ζ)
qf as

f
(∗,κ,ζ,e)
i (t) := F ∗e

(
U(w(h,κ,ζ)

i (t)), U(w(h,κ,ζ,+)
i (t)), n(κ,ζ)(X(κ)(ξ(ζ,i)))

)
. (6.12)

Having introduced the essential components of the scheme, a flux-differencing weight-adjusted
modal DSEM is now obtained by computing the time derivative as in (5.23), with the nodal
right-hand side computed as

r(h,κ,e)(t) := −
d∑
l=1

(
2S (l) �

d∑
m=1
{{G(κ)

lm }} � F (κ,m,e)(t)
)

1(Nq)

−
Nf∑
ζ=1

(
C (κ,ζ,e)(t)1(N(ζ)

qf
) +

(
R(ζ)

)T
(
B (ζ)J (κ,ζ)f (∗,κ,ζ,e)(t)−

(
C (κ,ζ,e)(t)

)T
1(Nq)

))
,

(6.13)

where � denotes the Hadamard product given by
[
A �B

]
ij

:= AijBij, and we define

C (κ,ζ,e)(t) :=
(
R(ζ)

)T
B (ζ) �

d∑
m=1
{{J (κ,ζ)n(κ,ζ)

m }} � F (κ,ζ,m,e)(t). (6.14)

The above formulation can be used with any set of SBP operators for which the boundary
matrices can be decomposed as in (2.45), and it will be shown in Section 6.2 that the
formulation is, in fact, mathematically equivalent to that in [133, Eq. (35)] when the same
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SBP operators are used in both schemes, a fact which we will exploit in our analysis of
conservation, free-stream preservation, and entropy stability in the following section.
Remark 6.1. When diagonal-E operators are used, the terms in (6.13) involving the correction
operator C (κ,ζ,e)(t) in (6.14) cancel, and hence the scheme simplifies to

r(h,κ,e)(t) =−
d∑
l=1

(
2S (l) �

d∑
m=1
{{G(κ)

lm }} � F (κ,m,e)(t)
)

1(Nq)

−
Nf∑
ζ=1

(
R(ζ)

)T
B (ζ)J (κ,ζ)f (∗,κ,ζ,e)(t),

(6.15)

a formulation which Ranocha et al. employ in [143, Section 2.1] to obtain highly efficient
algorithms using tensor-product LGL quadrature rules on curved quadrilateral and hexahedral
elements. However, since the tensor-product SBP operators on the reference triangle and
tetrahedron introduced in Chapter 4 are not diagonal-E operators, the proposed schemes
require the evaluation of the full right-hand side in (6.13) including the facet correction, the
efficient implementation of which will be discussed in Section 6.3.

6.2 Analysis

We will now demonstrate that the schemes introduced in the previous section are conservative,
free-stream preserving, and entropy stable due to their equivalence to formulations based on
hybridized summation-by-parts operators,2 which were proposed by Chan in [99].

6.2.1 Equivalent hybridized summation-by-parts formulation

The construction of such hybridized operators from SBP operators on the reference element
satisfying the conditions of Definition 2.3 is demonstrated with the following lemma.

Lemma 6.1. Given any nodal SBP operator D(l) := W −1(S (l) + 1
2E

(l)) on the reference
element in the sense of Definition 2.3 for which E (l) takes the form of (2.45), the block matrix

Q̄(l) :=


S (l) 1

2 n̂
(1)
l

(
R(1)

)T
B (1) · · · 1

2 n̂
(Nf )
l

(
R(Nf )

)T
B (Nf )

−1
2 n̂

(1)
l B (1)R(1) 1

2 n̂
(1)
l B (1)

... . . .
−1

2 n̂
(Nf )
l B (Nf )R(Nf ) 1

2 n̂
(Nf )
l B (Nf )

, (6.16)

2Such operators were originally introduced in [99] as decoupled SBP operators, with the term hybridized
SBP operator popularized following the review paper by Chen and Shu [100]. We note, however, that this
notion of “hybridization” differs from that used to describe finite-element methods which exploit static
condensation to reduce the number of coupled degrees of freedom (see, for example, [144] and [145]).
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satisfies the following “SBP-like” property from [99, Eq. (32)]:

Q̄(l) +
(
Q̄(l)

)T
= Ē (l), where Ē

(l) :=


0(Nq×Nq)

n̂
(1)
l B (1)

. . .
n̂

(Nf )
l B (Nf )

. (6.17)

Proof. Aside from the fact that our notation separates the operators on individual facets, the
result is identical to [146, Theorem 1]. The proof relies on the fact that when adding (6.16)
to its transpose, the top-left block vanishes by the skew-symmetry of S (l) and the off-diagonal
blocks vanish due to the blocks of the first row being the negative transposes of those in the
first column, and hence only the diagonal matrix Ē (l) remains.

The hybridized operators in (6.16) are of dimension N̄q by N̄q, where we define N̄q :=
Nq +N (1)

qf
+ · · ·+N

(Nf )
qf . Within a flux-differencing formulation, such operators act on block

matrices of the form

F̄ (κ,m,e)(t) :=


F (κ,m,e)(t) F (κ,1,m,e)(t) · · · F (h,Nf ,m,e)(t)
F (κ,1,m,e)(t) F (κ,1,1,m,e)(t) · · · F (κ,1,Nf ,m,e)(t)

... ... . . . ...
F (κ,Nf ,m,e)(t) F (κ,Nf ,1,m,e)(t) · · · F (κ,Nf ,Nf ,m,e)(t)

, (6.18)

where F (κ,ζ,η,m,e)(t) ∈ RN
(ζ)
qf
×N(η)

qf couples quadrature nodes on the facets Γ̂(ζ), Γ̂(η) ⊂ ∂Ω̂ as

F
(κ,ζ,η,m,e)
ij (t) := F#

me(U(w(h,κ,ζ)
i (t)),U(w(h,κ,η)

j (t))). (6.19)

As in [133], hybridized SBP operators on the physical element are constructed in split form as

Q̄(κ,m) := 1
2

d∑
l=1

(
Q̄(l)Ḡ(κ,l,m) + Ḡ(κ,l,m)Q̄(l)

)
, (6.20)

using the diagonal matrices of concatenated volume and facet metric terms given by

Ḡ(κ,l,m) :=


G(κ,l,m)

G(κ,1,l,m)

. . .
G(κ,Nf ,l,m)

, (6.21)

where the entries of G(κ,ζ,l,m) ∈ RN
(ζ)
qf
×N(ζ)

qf are given by G
(κ,ζ,l,m)
ij := G

(κ)
lm (ξ(ζ,i))δij. The

following lemma demonstrates the relation of (6.20) to the approach adopted in Section 6.1.3
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based on averaging of the metric terms between pairs of quadrature nodes.

Lemma 6.2. The split-form operator in (6.20) can be rewritten as

Q̄(κ,m) =
d∑
l=1

Q̄(l) � {{Ḡ(κ)
lm }}, (6.22)

where the entries of the matrix {{Ḡ(κ)
lm }} ∈ RN̄q×N̄q are given by

{{Ḡ(κ)
lm }}ij := 1

2
(
Ḡ

(κ,l,m)
ii + Ḡ

(κ,l,m)
jj

)
. (6.23)

Additionally, a property analogous to (6.17) is satisfied in physical space as

Q̄
(κ,m) +

(
Q̄

(κ,m))T
=


0(Nq×Nq)

B (1)J (κ,1)N (κ,1,m)

. . .
B (Nf )J (κ,Nf )N (κ,Nf ,m)

, (6.24)

provided that J (κ,ζ) and N (κ,ζ,m) are computed using (5.4) based on the volume metric terms.

Proof. Expressing (6.20) in indicial form and factoring out the scalar Q̄(l)
ij , we obtain

Q̄
(κ,m,n)
ij = 1

2

d∑
l=1

(
Q̄

(l)
ij Ḡ

(κ,l,m)
jj + Ḡ

(κ,l,m)
ii Q̄

(l)
ij

)

= 1
2

d∑
l=1

Q̄
(l)
ij

(
Ḡ

(κ,l,m)
ii + Ḡ

(κ,l,m)
jj

)
,

(6.25)

and hence the result in (6.22) follows directly from the definition of the Hadamard product.
The SBP-like property in (6.24) follows from (6.17) and (6.20), where we obtain the right-hand
side using (5.4) and the fact that the hybridized boundary operators Ē (l) are diagonal.

We now have the following theorem relating the formulation proposed in Section 6.1.3 to
one which is readily analyzed using the properties of hybridized SBP operators.

Theorem 6.1. Under Assumption 5.1, the DSEM given by (5.23) with r(h,κ,e)(t) defined as in
(6.13) is equivalent to the following hybridized SBP formulation proposed in [133, Eq. (35)]:

M̃ (κ) dũ(h,κ,e)(t)
dt =−

 V
V f

T
d∑

m=1

(
2Q̄(κ,m) � F̄ (κ,m,e)(t)

)
1(N̄q)

−
Nf∑
ζ=1

(
R(ζ)

)T
B (ζ)J (κ,ζ)

(
f (∗,κ,ζ,e)(t)−

d∑
m=1

N (κ,ζ,m)f (κ,ζ,m,e)(t)
)
,

(6.26)



Chapter 6. Entropy-stable tensor-product DSEMs on curved triangles and tetrahedra 80

where we define

V f :=


R(1)V

...
R(Nf )V

, f (κ,ζ,m,e)(t) :=


Fme

(
U(w(h,κ,ζ)

1 (t))
)

...
Fme

(
U(w(h,κ,ζ)

N
(ζ)
qf

(t))
)
. (6.27)

Proof. Substituting (6.13) into (5.23), multiplying from the left by M̃ (κ), and grouping
Hadamard products into block matrices, we obtain

M̃ (κ) dũ(h,κ,e)(t)
dt =−

 V
V f

T
d∑
l=1

(
2S̄ (l) �

d∑
m=1
{{Ḡ(κ)

lm }} � F̄ (κ,m,e)(t)
)

1(N̄q)

−
Nf∑
ζ=1

(
R(ζ)

)T
B (ζ)J (κ,ζ)f (∗,κ,ζ,e)(t),

(6.28)

where the facet correction terms in (6.14) have been incorporated into the hybridized operator

S̄ (l) :=


S (l) 1

2 n̂
(1)
l

(
R(1)

)T
B (1) · · · 1

2 n̂
(Nf )
l

(
R(Nf )

)T
B (Nf )

−1
2 n̂

(1)
l B (1)R(1)

...
−1

2 n̂
(Nf )
l B (Nf )R(Nf )

. (6.29)

Recognizing such a matrix as the skew-symmetric part of Q̄(l), we invoke the SBP-like
property from Lemma 6.1 to obtain 2S̄ (l) = 2Q̄(l) − Ē (l). Substituting such a relation into
(6.28) and using the consistency of the two-point flux as well as the fact that Ē (l) is diagonal,
the scheme becomes

M̃ (κ) dũ(h,κ,e)(t)
dt =−

 V
V f

T
d∑
l=1

(
2Q̄(l) �

d∑
m=1
{{Ḡ(κ)

lm }} � F̄ (κ,m,e)(t)
)
1(N̄q)

−
Nf∑
ζ=1

(
R(ζ)

)T
B (ζ)J (κ,ζ)

(
f (∗,κ,ζ,e)(t)−

d∑
m=1

N (κ,ζ,m)f (κ,ζ,m,e)(t)
)
,

(6.30)

Finally, considering the first term on the right-hand side of (6.30), we move the sum over the
index m outside of the sum over l and invoke Lemma 6.2 to obtain the split-form operator in
(6.20). The resulting scheme is then given by (6.26).

6.2.2 Conservation

As a consequence of the above equivalence, the conservation, free-stream preservation, and
entropy stability of the proposed discretizations follow directly from the analysis in [99] and
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[133]. Referring to [99] and [133] for further details, we summarize the critical steps of the
analysis in the remainder of this section, beginning with the following theorem establishing
discrete conservation.

Theorem 6.2. Let Assumptions 3.3 and 5.1 hold and assume that the quadrature rule in
(2.44) is of degree τ ≥ p+ pg, where we use (5.24) to obtain J (κ) ∈ Ppg(Ω̂). The entropy-stable
weight-adjusted modal DSEM given by (5.23) with r(h,κ,e)(t) defined as in (5.14) is then locally
and globally conservative, satisfying (5.31a) and (5.31b) when the two-point volume flux
satisfies (6.5a) and the directional interface flux satisfies (2.23a).

Proof. Using the equivalent formulation in (6.28), we proceed as in the proofs of Theorems 3.3
and 5.3, wherein both sides of the formulation are multiplied from the left by 1 T. Noting
that the skew-symmetry of S̄ (κ,m) and the symmetry of {{Ḡ(κ)

lm }} as well as F̄ (κ,m,e)(t) imply
that the matrix 2S̄ (l) � {{Ḡ(κ)

lm }} � F̄ (κ,m,e)(t) is skew-symmetric, we then use

(
1(N̄q)

)T(
2S̄ (l) � {{Ḡ(κ)

lm }} � F̄ (κ,m,e)(t)
)
1(N̄q) = 0 (6.31)

to show that the volume terms of (6.28) vanish, resulting in (5.34). The remainder of the
proof is then identical to those of Theorem 5.3.

6.2.3 Discrete metric identities and free-stream preservation

We present the following lemma from [133, Theorem 5], which establishes conditions under
which discrete metric identities analogous to (5.25) are satisfied.

Lemma 6.3. Assume that the metric terms, whether computed exactly or approximately,
satisfy G(κ)

lm ∈ Pq(Ω̂) as well as (2.12), and that the normals are computed as in (5.4). Then,
the hybridized SBP operators in (6.20) satisfy the following discrete metric identities:

Q̄(κ,m)1(N̄q) = 0(N̄q), ∀m ∈ {1 : d}, ∀κ ∈ {1 : Ne}. (6.32)

We now use the above lemma to demonstrate that the scheme is free-stream preserving.

Theorem 6.3. Let Assumptions 3.3 and 5.1 hold, and also assume that the conditions of
Lemma 6.3 are satisfied and that the two-point volume flux and the directional interface flux
satisfy (2.23b) and (6.5b), respectively. The scheme in (6.26), or, equivalently, in (5.23) with
r(h,κ,e)(t) defined as in (6.13), is then free-stream preserving, such that the right-hand side of
(5.23) vanishes for any uniform solution state satisfying the boundary conditions.

Proof. Considering the formulation in (6.26), the facet penalty on the second line vanishes
when the solution is identical on both sides of the interface due to the consistency property
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of the numerical interface flux. Invoking the consistency of the two-point flux as well, we
then see that the entire right-hand side of (6.26) vanishes when (6.32) holds, which follows
from Lemma 6.3. Since the weight-adjusted mass matrix is invertible by construction, the
time derivative is zero, and the scheme is therefore free-stream preserving.

6.2.4 Entropy stability

Invoking the entropy conditions in (6.6) and (6.7), we now present the following theorem,
which establishes that the proposed discretizations satisfy a discrete version of (2.8).

Theorem 6.4. Let Assumptions 3.3 and 5.1 hold, and also assume that the conditions of
Lemma 6.3 are satisfied, that the two-point volume flux is entropy conservative in the sense of
Definition 6.1, that the numerical interface flux is entropy stable in the sense of Definition 6.2.
The discretization given by (6.26), or, equivalently, by (5.23) with r(h,κ,e)(t) defined as in
(6.13), is then discretely entropy stable, satisfying the entropy balance

d
dt

Ne∑
κ=1

(
1(Nq)

)T
WJ (κ)s(h,κ)(t) ≤

∑
Γ(κ,ζ)⊂∂Ω

(
d∑

m=1

(
1(N(ζ)

qf
)
)T
B (ζ)J (κ)N (κ,ζ,m)ψ(κ,ζ,m)(t)

−
Nc∑
e=1

(
w(h,κ,e)(t)

)T(
R(ζ)

)T
B (ζ)J (κ,ζ)f (∗,κ,ζ,e)(t)

)
,

(6.33)

where we define

s(h,κ)(t) :=


S(u(h,κ)

1 (t))
...

S(u(h,κ)
Nq (t))

, ψ(κ,ζ,m)(t) :=


Ψm(w(h,κ,ζ)

1 (t))
...

Ψm(w(h,κ,ζ)
N

(ζ)
qf

(t))

. (6.34)

Moreover, the entropy balance in (6.33) holds as an equality when the numerical interface
flux is entropy conservative.

Proof. The proof of entropy conservation for a non-dissipative interface flux is identical to that
of [133, Theorem 2], wherein we left-multiply (6.26) by (w(h,κ,e)(t))T, sum over e ∈ {1 : Nc},
and use (6.32) as well as (6.24), which follow from Lemmas 6.2 and 6.3, respectively, to obtain

d
dt
(
1(Nq)

)T
WJ (κ)s(h,κ)(t) =

d∑
m=1

(
1(N(ζ)

qf
)
)T
B (ζ)J (κ)N (κ,ζ,m)ψ(κ,ζ,m)(t)

−
Nc∑
e=1

Nf∑
ζ=1

(
w(h,κ,ζ,e)(t)

)T
B (ζ)J (κ,ζ)f (∗,κ,ζ,e)(t).

(6.35)

For an entropy-conservative interface flux, summing (6.35) over all elements and splitting
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the contributions arising from each interior interface between the two elements sharing such
an interface results in a global statement of entropy conservation, corresponding to (6.33)
being satisfied as an equality. The entropy inequality for an entropy-stable interface flux then
follows, for example, from the analysis in [98, Theorems 3.4 and 4.3].

Remark 6.2. When periodic boundary conditions are imposed in all directions, the boundary
contributions on the right-hand side of (6.33) vanish similarly to the interior interface
contributions for an entropy-conservative interface flux. For an entropy-stable interface flux,
we then obtain

d
dt

Ne∑
κ=1

(
1(Nq)

)T
WJ (κ)s(h,κ)(t) ≤ 0, (6.36)

where, recalling the differing sign conventions, a suitable choice of mathematical entropy results
in a non-decreasing physical entropy, consistent with the second law of thermodynamics.

6.3 Efficient implementation

In this section, we discuss and analyze several important algorithmic considerations pertaining
to the implementation of the proposed schemes, particularly regarding techniques for exploiting
the sparsity and tensor-product structure of the SBP operators described in Chapter 4 within
the context of an entropy-stable flux-differencing DSEM.

6.3.1 Exploiting operator sparsity in the flux-differencing volume terms

As discussed, for example, by Ranocha et al. [143, Figure 3], the cost of an entropy-stable
scheme is dominated by the flux-differencing terms, for which the primary expense is the
evaluation of two-point entropy-conservative flux functions between pairs of quadrature nodes.
By rewriting the volume contributions appearing in the first term on the right-hand side of
(6.13) or (6.15) as

[(
2S (l) �

d∑
m=1
{{G(κ)

lm }} � F (κ,m,e)(t)
)

1(Nq)
]
i

=
Nq∑
j=1

S
(l)
ij F

#
e

(
U(w(h,κ)

i (t)), U(w(h,κ)
j (t)), {{2g(κ,l)}}ij

)
,

(6.37)

we observe, as noted in [143, Section 2.2], that due to the symmetry of {{G(κ)
lm }} � F (κ,m,e)(t)

and the skew-symmetry of S (l), it is only necessary to iterate over the indices i and j

corresponding to the strictly upper-triangular parts of such matrices. Moreover, the sum
need only be taken over the indices for which S

(l)
ij 6= 0, and the corresponding values of the
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vector
{{2g(κ,l)}}ij :=

[
G

(κ)
l1 (ξ(i)) +G

(κ)
l1 (ξ(j)), . . . , G(κ)

ld (ξ(i)) +G
(κ)
ld (ξ(j))

]T
(6.38)

within the directional two-point flux can be computed on the fly in order to avoid storing the
dense matrices {{G(κ)

lm }} in memory. Computing the sum on the right-hand side of (6.37) for
all i ∈ {1 : Nq} therefore requires the evaluation of the two-point flux function, which for
entropy-stable schemes is typically a relatively expensive operation involving the logarithmic
mean, once per nonzero entry in the strictly upper-triangular part of S (l). Recalling from [83]
and [84] that the minimum number of volume quadrature nodes for an SBP operator of degree
q is the dimension of the associated total-degree polynomial space, which scales as O(qd), the
number of two-point fluxes, and hence the work required to evaluate the flux-differencing
volume terms, is therefore expected to scale as O(q2d) when S (l) is dense, which, to the
author’s knowledge, is the case for all high-order SBP operators on triangles or tetrahedra
proposed prior to this work. By contrast, such matrices are sparse for the operators described
in Chapter 4, with their one-dimensional coupling along lines of nodes resulting in the same
O(qd+1) complexity as for tensor-product DSEMs on quadrilaterals or hexahedra.

6.3.2 Exploiting operator sparsity in the flux-differencing facet correction

The second line of (6.13) requires the evaluation of correction terms of the form C (κ,ζ,e)1(N(ζ)
qf

)

and (C (κ,ζ,e))T1(Nq) for each facet. While the simplified formulation for diagonal-E operators
in (6.15) does not require such corrections, diagonal-E operators on triangles and tetrahedra
require quadrature rules using a much larger number of nodes for a given degree than
would otherwise be needed, and are currently only available for modest polynomial degrees.3

Similarly to how the algorithms described in the previous subsection exploit the sparsity
of S (l), we can compute such terms in a manner that exploits the sparsity of the operators
(R(ζ))TB (ζ). To do this, we express the averaged metric terms in (6.10b) as

{{J (κ,ζ)n(κ,ζ)}}ij :=
[
{{J (κ,ζ)n

(κ,ζ)
1 }}ij, . . . , {{J (κ,ζ)n

(κ,ζ)
d }}ij

]T
, (6.39)

and evaluate the contributions from C (κ,ζ,e)(t)1(N(ζ)
qf

) and (C (κ,ζ,e)(t))T1(Nq) on the second
line of (6.13) simultaneously by initializing both such vectors to zero and then iterating
over values of i and j such that [(R(ζ))TB (ζ)]ij 6= 0. Within each iteration, we compute the
corresponding two-point flux and multiply each component by the corresponding nonzero

3To the author’s knowledge, the highest-order diagonal-E SBP operators on tetrahedra are those of Worku
et al. [113], who provide quadrature rules of up to degree 10 suitable for SBP operators of up to degree 5.
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(a) q = 2 (b) q = 5 (c) q = 10

Figure 6.1: Sparsity patterns for skew-symmetric hybridized tensor-product operators on the triangle;
upper-left blocks indicate coupling between pairs of volume quadrature nodes, while off-diagonal blocks
indicate coupling between volume and facet quadrature nodes

matrix entry to obtain

C
(κ,ζ,e)
ij (t) =

[
(R(ζ))TB (ζ)

]
ij
F#
e

(
U(w(h,κ)

i (t)), U(w(h,κ,ζ)
j (t)), {{J (κ,ζ)n(κ,ζ)}}ij

)
, (6.40)

which we accumulate within [C (κ,ζ,e)(t)1(N(ζ)
qf

)]i and [(C (κ,ζ,e)(t))T1(Nq)]j as

[
C (κ,ζ,e)(t)1(N(ζ)

qf
)
]
i
←
[
C (κ,ζ,e)(t)1(N(ζ)

qf
)
]
i
+ C

(κ,ζ,e)
ij (t), (6.41a)[(

C (κ,ζ,e)(t)
)T

1(Nq)
]
j
←
[(
C (κ,ζ,e)(t)

)T
1(Nq)

]
j

+ C
(κ,ζ,e)
ij (t). (6.41b)

Remark 6.3. The sparsity patterns for the hybridized operators described in Section 6.2 can
be used to illustrate which pairs of quadrature nodes must be coupled via two-point flux
evaluations within an entropy-stable flux-differencing formulation. In Figures 6.1 and 6.2,
we visualize the sparsity patterns for skew-symmetric matrices constructed as in (6.29)
with l = d using the proposed tensor-product SBP operators on the reference triangle and
tetrahedron, respectively, where we note that alternative choices of nodal ordering would lead
to different patterns with the same number of nonzero elements. Quantitative comparisons
of the required number of two-point flux evaluations for the proposed operators relative to
standard multidimensional SBP operators employing symmetric quadrature rules are deferred
to Section 7.3.4, although we note here as a general trend for tensor-product operators that
sparsity increases with the polynomial degree and the number of spatial dimensions.

6.3.3 Exploiting sum factorization for tensor-product operators

In addition to the reduction in computational complexity of the flux-differencing terms, the
algorithmic benefits of tensor-product operators discussed in Section 5.3 with respect to
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(a) q = 2 (b) q = 5 (c) q = 10

Figure 6.2: Sparsity patterns for skew-symmetric hybridized tensor-product operators on the tetrahedron;
upper-left blocks indicate coupling between pairs of volume quadrature nodes, while off-diagonal blocks
indicate coupling between volume and facet quadrature nodes

the skew-symmetric scheme in (5.14) extend directly to the matrix-vector products in the
proposed entropy-stable formulations, which involve V and R(ζ) as well as their transposes.
As such, we are able to exploit the structure of such matrices through sum factorization in
the evaluation of the conservative variables at the volume and facet quadrature nodes as

u(h,κ,e)(t) = V ũ(h,κ,e)(t), (6.42a)
u(h,κ,ζ,e)(t) = R(ζ)u(h,κ,e)(t), ∀ ζ ∈ {1 : Nf}. (6.42b)

Similarly, we use sum factorization to compute the weight-adjusted entropy projection as

w̃(h,κ,e)(t) = M−1V TW
(
J (κ)

)−1
V M−1V TWJ (κ)


We(u(h,κ)

1 (t))
...

We(u(h,κ)
Nq (t))

, (6.43)

as well as to evaluate such a projection at the volume and facet quadrature nodes as

w(h,κ,e)(t) = V w̃(h,κ,e)(t), (6.44a)
w(h,κ,ζ,e)(t) = R(ζ)w(h,κ,e)(t), ∀ ζ ∈ {1 : Nf}, (6.44b)

where we also exploit the fact that M−1 is the identity matrix due to the PKD basis remaining
orthonormal under all quadrature rules considered in this work. Furthermore, we employ
sum factorization when applying (R(ζ))T to obtain r(h,κ,e)(t) in (6.13), and, finally, in the
evaluation of the time derivative in (5.23) using the weight-adjusted inverse as in (5.45). Such
an approach results in the entire algorithm for computing the local time derivative requiring
O(pd+1) floating-point operations under the standard assumption that q scales as O(p) with
the polynomial degree p of the modal expansion. To the author’s knowledge, this is not
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achieved by any prior entropy-stable method on triangles or tetrahedra, for which the required
dense matrix operations are of O(p2d) complexity. Moreover, by avoiding the construction
of physical operator matrices and averaging the metric terms on the fly, memory usage is
minimized, with per-element memory requirements scaling as O(pd) due to the only necessary
storage being geometric information at the quadrature nodes, and, optionally, precomputed
diagonal entries of the matrices W (J (κ))−1, WJ (κ), and B (ζ)J (κ,ζ).

6.4 Chapter summary

This chapter extends the energy-stable methods on curved triangular and tetrahedral unstruc-
tured grids described in Chapter 5 to entropy-stable formulations for nonlinear hyperbolic
systems of conservation laws. The schemes described in this chapter employ the tensor-product
SBP operators in collapsed coordinates introduced in Chapter 4 within a weight-adjusted
modal flux-differencing formulation, which is shown to be free-stream preserving, locally
and globally conservative, and entropy conservative or entropy stable for suitable choices
of numerical interface flux. We also describe techniques for the efficient implementation of
the proposed schemes through the exploitation of operator sparsity to reduce the number of
required entropy-conservative two-point flux evaluations as well as the use of sum factorization
for efficient tensor-product operator evaluation, resulting in algorithms which are equivalent
in time and memory complexity to comparable schemes on quadrilaterals and hexahedra.



Chapter 7

Numerical experiments

In this chapter, which is based on portions of Papers III and IV, the energy-stable schemes
presented in Chapter 5 as well as the entropy-stable schemes presented in Chapter 6 are
applied to linear and nonlinear model problems, respectively, on curved simplicial meshes.

7.1 Simulation setup

The proposed schemes are implemented within StableSpectralElements.jl, an open-source
solver for conservation laws developed by the author of this thesis.1 Written in Julia, the
implementation in StableSpectralElements.jl closely parallels the present mathematical
framework for semi-discrete DSEM formulations and interfaces with OrdinaryDiffEq.jl,
which implements a wide variety of time-marching methods for ODEs [147]. A unified matrix
notation is used to represent linear operators, with the actual strategy for evaluating the
action of such operators on vectors (e.g. using matrix-free sum-factorization techniques to
apply tensor-product operators or applying explicitly formed matrix operators on the reference
or physical element) dispatched based on the chosen operator and algorithm subtypes. Such
a software design lends itself naturally to Julia’s “just ahead of time” compilation and
multiple-dispatch paradigms, which provide a high level of flexibility without substantial
performance compromises relative to traditional compiled languages [102].

7.1.1 Tensor-product and multidimensional SBP operators

Letting p denote the SBP operator degree, which we take to be equal to the degree of the
polynomial expansion employed in the case of a modal formulation, the tensor-product SBP
operators which we construct on the triangle employ LG quadrature rules with p+ 1 nodes for
integration with respect to η1, η2, and ηf , corresponding to q1 = q2 = qf = p, whereas those

1StableSpectralElements.jl is a registered Julia package and is available under the GNU General
Public License at https://github.com/tristanmontoya/StableSpectralElements.jl.
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on the tetrahedron employ LG quadrature rules for η1 and η2 alongside a JG quadrature rule
with (a3, b3) = (1, 0) for η3, with p+ 1 nodes in each direction (i.e. taking q1 = q2 = q3 = p).
The facet quadrature on the tetrahedron consists of an LG rule in the ηf1 direction and
a JG rule with (af2, bf2) = (1, 0) in the ηf2 direction, where we use p + 1 nodes in each
direction, corresponding to qf1 = qf2 = p. As such quadrature rules satisfy the conditions of
Theorems 4.1 and 4.2, valid SBP operators are obtained for all polynomial degrees.

To provide a point of comparison for the proposed tensor-product discretizations, we
construct multidimensional SBP operators using symmetric quadrature rules with positive
weights on the reference element following the approach proposed in [99, Lemma 1], which is
also detailed in Section 3.1.2. Specifically, for SBP operators of degree p on the triangle, we
use degree 2p Xiao–Gimbutas quadrature rules [148] for volume integration and degree 2p+ 1
LG quadrature rules for facet integration. On the tetrahedron, we use degree 2p Jaśkowiec–
Sukumar quadrature rules [149] for volume integration and degree 2p triangular quadrature
rules from [148] for facet integration. The resulting operators are henceforth denoted as
multidimensional to distinguish them from the tensor-product operators introduced in this
work, and are available for degrees p ≤ 25 on the triangle and p ≤ 10 on the tetrahedron.
These are, to the author’s knowledge, the highest-order SBP operators on triangles and
tetrahedra constructed to date using symmetric quadrature rules, and therefore facilitate
comparisons with the proposed tensor-product approach over a wide range of polynomial
degrees. Examples of volume quadrature nodes used to construct SBP operators employed
for the simulations in this chapter are pictured in Figure 7.1.

7.1.2 Curvilinear mesh generation

The problems considered in this work are defined on the spatial domain Ω := (0, L)d, where
L ∈ R+ and d ∈ {2, 3}. The meshes are generated by beginning with a regular Cartesian grid
with M edges in each direction and splitting each quadrilateral into two triangles or each
hexahedron into six tetrahedra, resulting in Ne = 2M2 in two dimensions and Ne = 6M3 in
three dimensions. We use the second algorithm described in [57, Section 2.3], which originally
appeared in [140], to orient the local coordinate systems such that Assumption 3.3 is satisfied
for tetrahedral meshes. The mapping nodes on the reference triangle and tetrahedron
are obtained using the interpolatory warp-and-blend procedure from [123], and an affine
transformation is used to obtain the positions of the mapping nodes on each element of the
split Cartesian mesh. Following Chan et al. [150, Section 5], the mapping nodes are then
perturbed as

x̃1 ← x1 + εL cos
(
π
L

(
x1 − 1

2

))
cos
(

3π
L

(
x2 − 1

2

))
,

x̃2 ← x2 + εL sin
(

4π
L

(
x̃1 − 1

2

))
cos
(
π
L

(
x2 − 1

2

))
,

(7.1)
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(a) Tensor-product quadrature nodes on the triangle (b) Tensor-product quadrature nodes on the tetrahedron

(c) Multidimensional quadrature nodes on the triangle (d) Multidimensional quadrature nodes on the tetrahedron

Figure 7.1: Volume quadrature nodes for SBP operators on the triangle and tetrahedron with p = 4

in two dimensions, and as

x̃2 ← x2 + εL cos
(

3π
L

(
x1 − 1

2

))
cos
(
π
L

(
x2 − 1

2

))
cos
(
π
L

(
x3 − 1

2

))
,

x̃1 ← x1 + εL cos
(
π
L

(
x1 − 1

2

))
sin
(

4π
L

(
x̃2 − 1
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x̃3 ← x3 + εL cos
(
π
L

(
x̃1 − 1

2

))
cos
(

2π
L

(
x̃2 − 1

2

))
cos
(
π
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(
x3 − 1

2

))
,

(7.2)

in three dimensions, where we take ε = 1/16 in both cases, and we note that such an
asymmetric warping is used to ensure that the results are not systematically biased by the
regularity of the mesh. The new node positions x̃ are then used to define the curvilinear
mapping in (5.1). Finally, the metric terms are computed using the approach described in
Section 5.1.1, where in the three-dimensional case we use the conservative curl formulation,
with the nodes used for the interpolation in (5.2) again obtained as in [123]. Examples of
curvilinear meshes and the mapping nodes used to obtain such meshes are shown in Figure 7.2.

7.2 Linear advection equation

In this section, we solve the linear advection equation given by (3.53) on the domain
Ω := (0, 1)d, with an advection velocity of a := [1, 1]T in two dimensions and a := [1, 1, 1]T in
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(a) Triangular mesh (b) Tetrahedral mesh (c) Tetrahedral mapping nodes

Figure 7.2: Examples of warped meshes and mapping nodes for pg = 4

three dimensions. Periodic boundary conditions are imposed in all directions, and the initial
condition is given by

U0(x) :=
d∏

m=1
sin(2πxm). (7.3)

Considering skew-symmetric nodal formulations in the form of (5.13a) as well as weight-
adjusted modal formulations in the form of (5.23) using the tensor-product and multidimen-
sional SBP operators on triangles and tetrahedra described in Section 7.1.1, we construct
the mesh as in Section 7.1.2 using an isoparametric mapping, corresponding to pg = p. The
systems of ODEs resulting from the proposed spatial discretizations are then integrated in
time until T = 1 using the five-stage, fourth-order explicit low-storage Runge-Kutta method
of Carpenter and Kennedy [151], with the time step taken to be sufficiently small for the error
due to the temporal discretization to be dominated by that due to the spatial discretization.

7.2.1 Conservation and energy stability

We plot the time evolution of the conservation and energy residuals in Figure 7.3 for the
proposed tensor-product formulations on triangles and tetrahedra, where we present results
for p = 4 and M = 2 as an illustrative example. Such quantities are given by

Conservation residual :=
Ne∑
κ=1

(
1(Nq)

)T
WJ (κ) du(h,κ)(t)

dt (7.4)

and

Energy residual :=



Ne∑
κ=1

(
u(h,κ)(t)

)T
WJ (κ) du(h,κ)(t)

dt (nodal)

Ne∑
κ=1

(
ũ(h,κ)(t)

)T
M̃ (κ) dũ(h,κ)(t)

dt (modal)
, (7.5)
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(a) Conservation residual for discretizations on triangles (b) Energy residual for discretizations on triangles

(c) Conservation residual for discretizations on tetrahedra (d) Energy residual for discretizations on tetrahedra

Figure 7.3: Time evolution of the conservation and energy residuals for skew-symmetric tensor-product
discretizations of the linear advection equation on triangles and tetrahedra with p = 4 and M = 2

corresponding to the time derivative of the discretely integrated numerical solution and that
of the discrete solution energy, respectively. As expected for conservative and energy-stable
SBP discretizations, the conservation residual remains close to machine precision for both the
upwind and central variants of the nodal and modal tensor-product schemes on triangles as
well as tetrahedra, while the energy residual is near machine precision for a central numerical
flux and negative for an upwind numerical flux. Note that we have deliberately used coarse
meshes for such tests in order to demonstrate that the conservation and energy stability
properties established in Theorems 5.2 to 5.4 are satisfied discretely (up to roundoff error) at
finite resolution, rather than only in the limit of mesh refinement.

7.2.2 Spectral radius

While the proposed spatial discretizations of the linear advection equation are provably energy
stable in a semi-discrete sense, the stability of the fully discrete problem requires the spectrum
of the semi-discrete operator to lie within the stability region of the chosen time-marching
method. Thus, for explicit time integration, the maximum stable time step size is dictated
by the spectral radius of the global semi-discrete operator. Figure 7.4 illustrates the effect of
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(a) Nodal formulations on triangles (b) Modal formulations on triangles

(c) Nodal formulations on tetrahedra (d) Modal formulations on tetrahedra

Figure 7.4: Variation in spectral radius of the semi-discrete advection operator with polynomial degree
for skew-symmetric discretizations on triangles and tetrahedra with M = 2; solid and dashed lines denote
upwind and central numerical fluxes, respectively

varying the polynomial degree on the spectral radius of the semi-discrete advection operator
for nodal and modal formulations using tensor-product as well as multidimensional SBP
operators on triangles and tetrahedra, with the number of edges in each direction held fixed
at M = 2. Considering the nodal and modal multidimensional schemes, the spectral radius
grows roughly quadratically with the polynomial degree in the case of a central flux, with
slightly slower growth observed for an upwind flux. The spectral radii as well as their growth
rates with respect to the polynomial degree are much larger for the nodal tensor-product
schemes than for all other methods, which results in a severe restriction on the time step
when such schemes are used with explicit temporal integration. This limitation resulting from
the concentration of resolution near the singularity of the collapsed coordinate transformation
is remedied through the use of the modal formulation, in which the nodal time derivative is
projected onto a standard total-degree polynomial space, resulting in spectral radii which
are similar to those of the multidimensional schemes. Such behaviour is consistent with the
literature (see, for example, [110, Section 6.3]) and favours the use of the modal formulation
at higher polynomial degrees, at least for explicit schemes.
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(a) h-refinement for nodal formulations
on triangles with p = 4

(b) h-refinement for modal formulations
on triangles with p = 4

(c) p-refinement for modal formulations
on triangles with M = 4

(d) h-refinement for nodal formulations
on tetrahedra with p = 4

(e) h-refinement for modal formulations
on tetrahedra with p = 4

(f) p-refinement for modal formulations
on tetrahedra with M = 4

Figure 7.5: Convergence with respect to h and p for skew-symmetric discretizations of the linear advection
equation; solid and dashed lines denote upwind and central numerical fluxes, respectively

7.2.3 Accuracy

Keeping the polynomial degree fixed at p = 4 and successively doubling the number of edges
in each direction, the discrete L2 error is evaluated for each scheme using its associated
volume quadrature rule and plotted with respect to the nominal element size, which is given
by h = L/M . We see from Figures 7.5a, 7.5b, 7.5d, and 7.5e that all methods considered
converge approximately as O(hp+1) in the case of an upwind numerical flux, with similar
accuracy levels on a given mesh observed for all schemes. Recalling from Section 7.2.2 that
the spectral radius for the nodal tensor-product formulation becomes extremely large at
high polynomial degrees, we examine the schemes’ convergence under p-refinement with
M = 4, considering modal formulations only. As shown in Figures 7.5c and 7.5f, the modal
tensor-product schemes on triangles and tetrahedra are similar in accuracy to comparable
multidimensional formulations, with all schemes exhibiting exponential convergence. The
reduction in accuracy observed when using a central numerical flux is well known in the
context of DSEMs for hyperbolic PDEs, and, as discussed, for example, by Hu et al. [152] and
Asthana et al. [153] and justified through linear eigensolution analysis, can be attributed to
the failure of the central scheme to dissipate spurious solution modes contributing to excessive
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dispersive error, which would otherwise be damped out by the upwind flux. Furthermore,
although not proven rigorously for the particular schemes proposed in this work, a priori error
analyses such as that presented by Brezzi et al. [154] for a steady linear hyperbolic problem
demonstrate that, unlike its central counterpart, the standard upwind DG method admits
a bound on a norm which controls the magnitudes of the inter-element jumps, resulting
in an improved error estimate (we refer to the textbook by Di Pietro and Ern [155] for
a detailed treatment of such estimates for DG schemes). The results of our h-refinement
and p-refinement studies indicate that for this smooth model problem, the proposed skew-
symmetric tensor-product discretizations on triangles and tetrahedra offer similar accuracy
to comparable multidimensional schemes for a given mesh and polynomial degree, but, unlike
their multidimensional counterparts, support the use of efficient sum-factorization algorithms
as described in Section 5.3.

Remark 7.1. A similar numerical experiment to that described above can be used to verify
the accuracy of the split-form derivative approximation obtained using (5.18). As an example,
we consider a smooth vector field F : Ω→ Rd with components given by

Fm(x) := −cos(2πxm)
2πd

∏
l∈{1:d}\m

sin(2πxl), (7.6)

which we differentiate in split form using tensor-product operators of degree p = 4 on a
sequence of successively refined curvilinear meshes constructed as in Section 7.1.2. At each
grid level, the resulting approximation to ∇x · F (x) is compared to the exact divergence,
which is equal to the initial condition given in (7.3), and the L2 error is evaluated using the
scheme’s corresponding volume quadrature rule. Plotting the results of such an experiment
in Figure 7.6, we observe O(hp) convergence for the proposed tensor-product SBP operators
on the reference triangle and tetrahedron, as expected from [97, Theorem 9]. However,
a loss of convergence can be seen when differentiating in split form using tensor-product
operators based on “standard” choices of Jacobi-Gauss quadrature with exponents taken
as (a1, b1) = (0, 0), (a2, b2) = (1, 0), and (a3, b3) = (2, 0), following [56, 57]. This loss
of convergence can likely be attributed to the fact that, as discussed in Remark 4.1 and
Section 4.2.2, the resulting operators do not satisfy the SBP property on the reference simplex,
which is assumed to hold when deriving the truncation error estimate in [97, Theorem 9].

7.2.4 Estimated computational cost

Figure 7.7 displays the number of floating-point operations incurred in evaluating the time
derivative on a single element for each scheme at varying polynomial degrees, including the
evaluation of the physical flux at all volume quadrature nodes and the evaluation of the
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(a) Triangles (b) Tetrahedra

Figure 7.6: Accuracy of the split-form divergence approximation using tensor-product operators with p = 4

numerical flux at all facet quadrature nodes.2 Since the results in Section 7.2.3 indicate that
for a given mesh and polynomial degree, the accuracy of the proposed tensor-product approach
is comparable to that of a multidimensional scheme employing a symmetric quadrature rule,
such an analysis is expected to provide a fair efficiency comparison, assuming that the
implementations of all methods are similarly optimized and that the resulting algorithms
are compute-bound rather than memory-bound. If only the reference-operator algorithms
described in Section 5.3.1 are considered (i.e. ignoring the dashed lines in Figure 7.7), we
see that the sum-factorization algorithms used for the proposed tensor-product operators
yield a significant reduction in operation count relative to the multidimensional operators
for all orders of accuracy, scaling approximately as O(pd+1) for both the nodal and modal
tensor-product formulations, in contrast to the O(p2d) scaling of the nodal and modal
multidimensional formulations. If, however, we also consider the physical-operator algorithms
described in Section 5.3.2, which require the precomputation and storage of operator matrices
for each element, and assume that neither memory size nor latency are limiting factors, the
multidimensional operators can be competitive with the proposed tensor-product operators
at lower polynomial degrees. Examining the dashed lines in Figure 7.7, we observe that the
physical-operator implementation using multidimensional SBP operators, while asymptotically
requiring O(p2d) operations, nevertheless requires fewer floating-point operations than the
O(pd+1) sum-factorization implementation of the tensor-product approach when p ≤ 4 or
p ≤ 9 for nodal or modal formulations, respectively, on triangles, and when p ≤ 4 or p ≤ 5
for nodal or modal formulations, respectively, on tetrahedra.

Remark 7.2. Comparisons on the basis of floating-point operation count, while more objective
than implementation-specific and hardware-specific timing comparisons, are not necessarily
representative of efficiency at lower polynomial degrees, for which performance is often
substantially limited by memory bandwidth. However, due to the arithmetic intensity of

2The operation count for each algorithm (implemented in native Julia without calls to BLAS) was
evaluated using GFlops.jl, which is available at https://github.com/triscale-innov/GFlops.jl.

https://github.com/triscale-innov/GFlops.jl
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(a) Nodal formulations on triangles (b) Modal formulations on triangles

(c) Nodal formulations on tetrahedra (d) Modal formulations on tetrahedra

Figure 7.7: Number of floating-point operations in local time derivative evaluation for skew-symmetric
discretizations of the linear advection equation; solid and dashed lines denote reference-operator and physical-
operator algorithms, respectively

an SEM increasing with the polynomial degree of the discretization (see, for example, the
roofline analysis in [62]), floating-point operation count indeed becomes a relevant measure
at higher polynomial degrees, which is precisely where the proposed tensor-product approach
shows significant cost savings. The point at which such benefits become substantial is
dependent on the specifics of the implementation and hardware (e.g. considering the memory
access pattern, cache size, as well as the use of single-instruction-multiple-data vectorization
or multithreading) as well as the PDE and the specifics of the numerical method, and is
therefore an important topic of future investigation within the context of the high-performance
implementation and evaluation of the algorithms proposed in this thesis.

7.3 Euler equations

The Euler equations constitute a system of coupled nonlinear PDEs governing the conservation
of mass, momentum, and energy for a compressible, inviscid, and adiabatic fluid. Such a
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system takes the form of (2.1), where we define

U(x, t) :=



ρ(x, t)
ρ(x, t)V1(x)

...
ρ(x, t)Vd(x)
E(x, t)


, Fm(U(x, t)) :=



ρ(x, t)Vm(x, t)
ρ(x, t)V1(x, t)Vm(x, t) + P (x, t)δ1m

...
ρ(x, t)Vd(x, t)Vm(x, t) + P (x, t)δdm

Vm(x, t)(E(x, t) + P (x, t))


, (7.7)

in terms of the density ρ(x, t) ∈ R, velocity V (x, t) ∈ Rd, total energy per unit volume
E(x, t) ∈ R, and pressure P (x, t) ∈ R. We compute the pressure in terms of the other
variables using the equation of state

P (x, t) = (γ − 1)
(
E(x, t)− 1

2ρ(x, t)
∥∥∥V (x, t)

∥∥∥2
)
, (7.8)

where γ > 1 is the specific heat ratio, and we have assumed that the fluid is an ideal gas
with constant specific heat. In all tests considered here, we take γ = 7/5 for air. The Euler
equations are hyperbolic for solutions belonging to the admissible set

Υ :=
{
U(x, t) ∈ Rd+2 : P (x, t), ρ(x, t) > 0

}
. (7.9)

While there exist many possible entropy–entropy flux pairs for the Euler equations satisfying
the conditions of Definition 2.1, we restrict our attention to the pair given by

S(U(x, t)) := −ρ(x, t)
γ − 1 ln

(
P (x, t)
ρ(x, t)γ

)
, (7.10a)

F(U(x, t)) := −ρ(x, t)V (x, t)
γ − 1 ln

(
P (x, t)
ρ(x, t)γ

)
, (7.10b)

which also symmetrizes the viscous terms of the compressible Navier–Stokes equations with
heat conduction, and was shown by Hughes et al. [96] to be the unique member (up to an
affine transformation) of Harten’s family of entropy–entropy flux pairs [156] to do so.

7.3.1 Entropy-conservative and entropy-stable flux functions

To define an entropy-conservative two-point flux function in the sense of Definition 6.1 with
respect to the entropy–entropy flux pair in (7.10), we make use of the notation

{{a}} := 1
2
(
a− + a+

)
(7.11)
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and

{{a}}ln :=


a+−a−

ln(a+)−ln(a−) , a− 6= a+,

a−, a− = a+,
(7.12)

for the arithmetic mean and logarithmic mean, respectively, where Taylor-series approxi-
mations from [143, Algorithms 2 and 3] are used to compute the logarithmic mean and its
reciprocal when a− and a+ are nearly equal. The particular two-point flux employed in this
work was proposed by Ranocha [157, 158], and is given by

F#
m(U−, U+) :=



{{ρ}}ln{{Vm}}
{{ρ}}ln{{Vm}}{{V1}}+ {{P}}δ1m

...
{{ρ}}ln{{Vm}}{{Vd}}+ {{P}}δdm

1
2{{ρ}}ln{{Vm}}(V − · V + + 1

γ−1{{ρ/P}}
−1
ln ) + 1

2(P−V +
m + P+V −m )


. (7.13)

In addition to satisfying the entropy conservation property in (6.6), Ranocha’s flux is kinetic
energy preserving as well as pressure equilibrium preserving (see, for example, Ranocha and
Gassner [159]). The interface flux takes the form of (6.8), where we use Davis’s wave speed
estimate [160],

Λ(U−, U+,n) := max
(∣∣∣V − · n∣∣∣, ∣∣∣V + · n

∣∣∣)+ max
(√

γP−/ρ−,
√
γP+/ρ+

)
. (7.14)

In all the results which follow, we employ weight-adjusted modal flux-differencing formulations,
which take the form of (5.23) with r(h,κ,e)(t) computed as in (6.13). We refer to the schemes
employing local Lax–Friedrichs dissipation based on the entropy-projected conservative
variables as entropy-stable methods. We also implement a variant without dissipation, in
which the second term on the right-hand side of (6.8) is absent; such schemes are denoted as
entropy-conservative methods.

7.3.2 Accuracy

We assess the accuracy of the proposed entropy-conservative and entropy-stable discretizations
of the Euler equations under refinement with respect to the nominal element size h as well as
the polynomial degree p in the context of smooth problems with known analytical solutions.
The initial condition in (2.1b) is prescribed as

U0(x) :=


ρ0(x)

ρ0(x)V 0(x)
1

γ−1P0(x) + 1
2ρ0(x)‖V 0(x)‖2

 (7.15)
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(a) h-refinement on triangles with p = 4 (b) h-refinement on triangles with p = 5 (c) p-refinement on triangles with M = 4

(d) h-refinement on tetrahedra with p = 4 (e) h-refinement on tetrahedra with p = 5 (f) p-refinement on tetrahedra with M = 4

Figure 7.8: Convergence with respect to h and p for discretizations of the Euler equations; dashed and solid
lines denote density error for entropy-conservative and entropy-stable schemes, respectively

in terms of the primitive variables ρ0(x), V 0(x), and P0(x). We consider the smooth density
wave problem from Jiang and Shu [161, Section 7], for which the initial values of the primitive
variables are given by

ρ0(x) := 1 + 1
5 sin

2π
L

d∑
m=1

xm

, V 0(x) :=
[
1, . . . , 1

]T
, P0(x) := 1, (7.16)

on the domain Ω := (0, 2)d, with periodic boundary conditions applied in all directions. The
solution is advanced in time for one period of wave propagation (i.e. until a final time of T = 2)
using the eighth-order Dormand–Prince algorithm described in [162, Section II.5], where,
as in the previous section, the time step is taken to be sufficiently small for the temporal
discretization error to be negligible in comparison to that due to the spatial discretization.
The meshes for such simulations, as for all numerical experiments which we will present for
in this section, are constructed as in Section 7.1.2, where we use an isoparametric mapping
(i.e. taking pg = p) and employ the conservative curl formulation described in Section 5.1.1
to satisfy the metric identities in the three-dimensional case.

Convergence is examined with respect to the nominal element size as well as the polynomial
degree for entropy-conservative and entropy-stable DSEMs using the tensor-product and
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multidimensional SBP operators on triangles and tetrahedra considered in Section 6.3. The
degree p of the solution expansion in (2.20) is taken to be equal to the degree q of the SBP
operators, and we report the L2 norm of the density error, which is computed numerically
using a quadrature rule of degree 35. Similar convergence behaviour was observed for the
other solution variables as well as when computing the error norm as in Section 7.2.3 using
each scheme’s respective volume quadrature rule. Figure 7.8 demonstrates optimal O(hp+1)
algebraic convergence under h-refinement for the entropy-stable discretizations (i.e. those
including interface dissipation) as well as exponential convergence under p-refinement, where
we recall from Section 7.1.1 that the multidimensional SBP operators on tetrahedra are
only available for degrees up to ten. For a given mesh and polynomial degree, the error
norms obtained for the proposed tensor-product discretizations are found to be very close to
those obtained for their multidimensional counterparts, which suggests that their algorithmic
advantages discussed in Section 6.3 with respect to the ability to exploit operator sparsity
and sum factorization do not come at the expense of accuracy.

Remark 7.3. The numerical results are consistent with the conservation property established
in Theorem 6.2, with the time derivative on the left-hand side of (5.31b) remaining close
to machine precision for all solution variables at approximately 100 equispaced snapshots
taken during each test. Furthermore, the rates of entropy dissipation given by the left-hand
side of (6.33) are verified for the entropy-conservative and entropy-stable schemes to be zero
and non-positive, respectively, at all snapshots (up to roundoff error levels close to machine
precision), as is consistent with Theorem 6.4.

7.3.3 Robustness

High-order methods such as DSEMs are prone to numerical stability issues, particularly in the
context of under-resolved nonlinear problems, in which high-frequency numerical modes are
produced and potentially amplified by the discretization, resulting in non-physical blow-up or
negative values of thermodynamic quantities such as pressure or density (i.e. corresponding to
solutions outside the admissible set Υ). Such under-resolution commonly arises in simulations
of turbulent fluid flow problems, which are characterized by the cascade of energy from
larger eddies to those progressively smaller in size, eventually dissipating as heat due to the
viscosity of the fluid (see, for example, Pope [163, Chapter 6]). As the Euler equations do not
model physical viscosity, the only dissipation present is that inherent in the numerical scheme,
which is typically small for a high-order method, thus exposing the potentially destabilizing
effects of under-resolved eddies. We therefore use simulations of inviscid vortical flows to
mimic worst-case scenarios with respect to under-resolved turbulence, where we are interested
in assessing whether the simulations run to completion and whether the entropy bounds
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established in Section 6.2 hold, rather than in evaluating the accuracy of such simulations.
In the two-dimensional case, we consider the Kelvin–Helmholtz instability (KHI) problem

described by Rueda-Ramı́rez and Gassner [164] and used for robustness tests by Chan et al.
[165], for which we define the smoothed step function

B(x) := tanh
(
15(x2 − 1

2)
)
− tanh

(
15(x2 − 3

2)
)

(7.17)

in order to obtain the initial condition, which is given in terms of the primitive variables by

ρ0(x) := 1
2 + 3

4B(x), V 0(x) :=
1

2(B(x)− 1)
1
10 sin(2πx1)

, P0(x) := 1, (7.18)

on the domain Ω := (0, 2)2, with periodic boundary conditions in both directions. As in
[165], we integrate until a final time of T = 15. In three dimensions, we consider an inviscid
Taylor–Green vortex (TGV) problem, for which the initial condition is given on the periodic
domain Ω := (0, 2π)3 as

ρ0(x) := 1, V 0(x) :=
[

sin(x1) cos(x2) cos(x3), − cos(x1) sin(x2) cos(x3), 0
]T
, (7.19)

P0(x) := 1
γMa2 + 1

16

(
cos(2x1) + 2 cos(2x2) + cos(2x1) cos(2x3) + cos(2x2) cos(2x3)

)
,

where Ma ∈ R+ is the nominal Mach number. We run the TGV simulations until a final
time of T = 14, and, as in [166], we consider the nearly incompressible case of Ma = 0.1 as
well as the case of Ma = 0.7, where the latter is expected to pose a greater challenge to the
robustness of the proposed schemes, specifically regarding positivity preservation.

The Euler equations are solved for the above initial conditions using the proposed entropy-
conservative and entropy-stable DSEMs for polynomial degrees 4 to 8, taking M = 16 for the
KHI problem and M = 4 for the TGV problem. We integrate in time using the same explicit
eighth-order Dormand–Prince method used for the accuracy tests. The time step is taken to
be sufficiently small to ensure that the reported instances of instability result purely from
the spatial discretization, and we did not find any of the reported instabilities to be remedied
by decreasing the time step size. Without any additional stabilization beyond the interface
dissipation provided by the numerical flux in (6.8), all simulations ran to completion for the
entropy-stable schemes using tensor-product as well as multidimensional SBP operators on
triangles and tetrahedra. Figure 7.9 demonstrates that the entropy is nonincreasing for all
time in each of such cases, as expected from Theorem 6.4 for periodic boundary conditions.

While the entropy-conservative simulations ran to completion for the TGV with Ma = 0.1,
incurring a change in entropy close to machine precision, such computations crashed for
the TGV with Ma = 0.7 as well as for the KHI due to negative densities or pressures. This



Chapter 7. Numerical experiments 103

(a) Kelvin–Helmholtz instability, tensor-
product operators on triangles

(b) Taylor–Green vortex, Ma = 0.1,
tensor-product operators on tetrahedra

(c) Taylor–Green vortex, Ma = 0.7,
tensor-product operators on tetrahedra

(d) Kelvin–Helmholtz instability, multi-
dimensional operators on triangles

(e) Taylor–Green vortex, Ma = 0.1, mul-
tidimensional operators on tetrahedra

(f) Taylor–Green vortex, Ma = 0.7, mul-
tidimensional operators on tetrahedra

Figure 7.9: Normalized entropy change for entropy-stable discretizations of the Euler equations

reflects a well-known limitation of the entropy analysis, namely that entropy stability does
not guarantee positivity of thermodynamic quantities. Although not provably positivity
preserving, the entropy-stable schemes using the dissipative interface flux in (6.8) did not
incur negative densities or pressures for any of the tests considered in this work, likely
as a consequence of the dissipative term within the numerical flux serving to dampen any
oscillations which would otherwise eventually lead to a violation of positivity. As a result, such
schemes are highly robust even in the presence of substantially under-resolved solution features.
These results are consistent with the observations in [165], where the authors demonstrated
numerically that entropy-stable schemes which incorporate an entropy projection are often
able to avoid negative densities or pressures for challenging under-resolved problems without
the need for positivity-preserving limiters. We recognize, however, that such an approach may
not be sufficient to preserve positivity for problems with discontinuities, and the extension of
subcell limiting techniques such as those developed by Rueda-Ramı́rez et al. [167], Yamaleev
and Upperman [168], and Lin et al. [169] to the proposed tensor-product discretizations on
triangles and tetrahedra is an important topic of future research.
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7.3.4 Estimated computational cost

As discussed in Section 6.3 and in [143], the overall expense of an entropy-stable DSEM
is dominated by that of the local flux-differencing terms in (6.13), the cost of which is
proportional to the number of two-point entropy-conservative flux functions between pairs of
quadrature nodes. Letting q denote the SBP operator degree, which may differ in general
from the degree p of the polynomial expansion, we plot the number of required two-point
flux evaluations for each class of operator in Figure 7.10. Since dense matrix storage is used
in our implementation of the multidimensional operators, the only zero entries considered
for such operators are those along the main diagonal of the skew-symmetric matrix S (l),
although we observe numerically that a small fraction of the off-diagonal entries are, in fact,
on the order of machine precision. The scaling is observed to be slightly better than the
asymptotic estimates for both classes of operators, which we recall from Section 6.3 to be
O(qd+1) and O(q2d) for the tensor-product and multidimensional operators, respectively, and
the number of two-point flux evaluations required for the proposed tensor-product approach
is smaller than that required when using multidimensional SBP operators for all polynomial
degrees considered. As expected, the benefit of the tensor-product approach increases with
the polynomial degree; for example, the number of two-point flux evaluations is reduced by
factors of 1.56 at q = 2, 2.78 at q = 5, and 4.57 at q = 10 on triangles, and by factors of 1.88
at q = 2, 3.44 at q = 5, and 10.99 at q = 10 on tetrahedra. We also consider the total number
of floating-point operations per variable incurred in evaluating the matrix-vector products in
(6.13), (6.42), (6.43), and (5.45) on a given element, where, as in the numerical experiments
presented earlier in this chapter, we take p = q in all cases. The results of such an analysis,
which are displayed in Figure 7.11, are qualitatively similar to those in Figure 7.10 for higher
polynomial degrees, although the benefit of the tensor-product operators for low polynomial
degrees is less substantial in this regard, requiring roughly the same number of floating-point
operations as the multidimensional operators, for example, at p = 2.

Remark 7.4. The discussion in Remark 7.2 regarding comparisons based on operation count
applies equally to the entropy-stable discretizations considered in this section. Additionally,
due to their use of a larger number of volume and facet quadrature nodes than typical
multidimensional operators of the same degree, the tensor-product operators require a
somewhat greater number of conversions between conservative and entropy variables as well
as a somewhat larger number of numerical interface flux evaluations. These operations do
not, however, typically constitute the most significant contribution to the overall expense
of an entropy-stable scheme and incur a cost which grows more slowly with the polynomial
degree than that of the flux-differencing terms.
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(a) Triangles (b) Tetrahedra

Figure 7.10: Number of two-point flux evaluations in local flux-differencing terms

(a) Triangles (b) Tetrahedra

Figure 7.11: Number of floating-point operations per variable in local operator evaluation

7.4 Chapter summary

This chapter presents numerical experiments involving the solution of the linear advection
and compressible Euler equations using provably stable DSEMs on curved triangular and
tetrahedral meshes employing the tensor-product SBP operators constructed in Chapter 4.
The discrete conservation properties and energy or entropy estimates established theoretically
in Chapters 5 and 6 are confirmed numerically, and the schemes are compared to those using
standard multidimensional SBP operators based on symmetric quadrature rules in terms of
their accuracy under h- and p-refinement, robustness for under-resolved nonlinear problems,
spectral radius of the semi-discrete linear advection operator, and estimated computational
cost. We conclude from such experiments that the proposed energy-stable and entropy-stable
DSEMs using tensor-product SBP operators on triangles and tetrahedra enable a reduction
in computational complexity (and, hence, a significantly reduced cost for high polynomial
degrees) to be achieved on triangular and tetrahedral grids without compromising accuracy,
robustness, or spectral radius relative to existing multidimensional formulations.



Chapter 8

Conclusions

This thesis presents a comprehensive approach to the formulation and analysis of provably
stable DSEMs for conservation laws based on the SBP property. Such a framework enables
the unified analysis of a broad class of existing DG and FR methods by recasting them as
SBP schemes, through which conservation and energy stability can be proven through matrix
analysis. Furthermore, the present framework facilitates the construction and analysis of a new
class of DSEMs on triangles and tetrahedra which combine the geometric flexibility afforded
through the use of simplicial elements with the efficiency of a tensor-product formulation and
the robustness of an energy-stable or entropy-stable discretization with the SBP property.
Such schemes are constructed through a novel synergy of the following technologies.

• The discretization on the reference triangle or tetrahedron uses tensor-product spectral-
element operators with the SBP property in collapsed coordinates, which enable the
use of sum-factorization algorithms for efficient matrix-free operator evaluation.

• A split formulation is used to obtain energy-stable schemes for the linear advection
equation on curved simplicial meshes. The method is extended to entropy-stable
discretizations of nonlinear hyperbolic systems through a flux-differencing approach.

• The use of a modal formulation employing a projection onto a total-degree polynomial
space alleviates the explicit time step restriction resulting from the singular nature of
the collapsed coordinate transformation.

• By exploiting the “warped” tensor-product structure of the modal basis functions
alongside a weight-adjusted approximation to the inverse of the curvilinear mass matrix,
we obtain an explicit algorithm for computing the time derivative on a given element
in O(pd+1) floating-point operations, with optimal O(pd) storage requirements.

• In addition to the use of sum factorization for efficient tensor-product operator evalu-
ation, the proposed entropy-stable schemes exploit the sparsity of the proposed SBP
operators to compute the local flux-differencing terms, reducing the number of required
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entropy-conservative two-point flux evaluations by a factor ranging from 1.56 at p = 2
to 4.57 at p = 10 for triangles, and from 1.88 at p = 2 to 10.99 at p = 10 for tetrahedra.

While possessing a particular structure which lends itself to an efficient implementation,
the proposed tensor-product operators satisfy the same algebraic properties as existing
multidimensional SBP operators and are therefore amenable to the same analysis of free-
stream preservation, conservation, and energy or entropy stability within the proposed
theoretical framework, thus illustrating the utility of such a unified approach. Through
numerical experiments, the proposed methods are shown to be at least as accurate on a
given mesh as otherwise identical discretizations using multidimensional SBP operators
based on symmetric quadrature rules. Furthermore, the two operator families both result in
entropy-stable schemes which exhibit excellent robustness properties for challenging nonlinear
problems containing under-resolved scales. The proposed tensor-product triangular and
tetrahedral DSEMs thus possess very similar approximation properties to existing approaches
while offering the potential for significant efficiency benefits at higher polynomial degrees.
Considering this thesis in its entirety, the analysis of existing DG and FR methods as well as
the development of novel energy-stable and entropy-stable tensor-product DSEMs on triangles
and tetrahedra therefore serve as demonstrative examples which illustrate the utility of the
SBP property as a general guiding principle for the construction and analysis of numerical
methods for conservation laws.

8.1 Recommendations

There remain numerous avenues for further development of the proposed framework as well
as certain limitations which should be addressed in future work. Specific recommendations of
topics which merit further investigation are provided below.

• Further accuracy, efficiency, and robustness comparisons between the schemes en-
compassed within the present framework are required. In particular, fair efficiency
comparisons should be performed between the proposed tensor-product DSEMs on
triangles and tetrahedra and those using different families of multidimensional SBP
operators, including diagonal-E operators such as those recently proposed in [113].

• Numerical studies should be undertaken in order to assess the influence of the techniques
used to approximate the metric terms and normals on the accuracy of the resulting
schemes. In particular, the conservative curl formulation from [133] which we employ in
this thesis to should be compared to the optimization-based approach proposed in [97].
Additionally, the effect of approximating the outward unit normal as in (5.4) should be
examined within the context of wall-bounded problems.
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• Although we address only hyperbolic conservation laws in this thesis, the proposed
tensor-product DSEMs on simplices could likely be applied in a straightforward manner
to problems with parabolic or nonconservative terms. This could be done, for example,
by adapting existing techniques suitable for entropy-stable modal formulations such as
those proposed by Chan et al. [170] and Waruzewski et al. [171] in the context of the
compressible Navier–Stokes equations and the Euler equations with gravity, respectively.

• The novel SBP operators developed for triangles could be extended through a tensor-
product construction to triangular prisms, which are useful for boundary layer meshing
as well as for three-dimensional atmospheric simulations on geodesic (e.g. icosahedral)
grids. It would also be useful to develop SBP operators with a tensor-product structure
on pyramids, as such elements are often used to transition between hexahedral and
tetrahedral elements within a hybrid mesh.

• While the spatial discretizations developed and analyzed in this thesis are suitable for use
with either explicit or implicit temporal integration, the weight-adjusted approximation
of the inverse mass matrix and the comparisons of the schemes’ spectral radii pertain
primarily to the explicit case. In order to facilitate the use of the proposed tensor-
product discretizations on simplices in conjunction with implicit time-marching methods,
it would be helpful to compare the conditioning of the linear systems resulting from the
nodal and modal formulations in collapsed coordinates and to develop preconditioners
which exploit the tensor-product structure and sparsity of the proposed operators.

• Other approaches to the construction of tensor-product DSEMs on triangles and
tetrahedra could be explored. For example, Li et al. [172] and Zhou et al. [173, 174]
construct tensor-product formulations on triangular elements based on an alternative
mapping from the square to the reference triangle which leads to a more uniform
nodal distribution, and they describe a similar mapping from the cube to the reference
tetrahedron. While it is not clear whether SBP operators can be constructed using such
a mapping, the approach should be studied in further detail in order to determine its
feasibility as an alternative to the proposed formulations based on collapsed coordinates.

• As discussed in Section 7.3.3, the proposed entropy-stable schemes on do not guarantee
positivity of thermodynamic variables such as pressure or density. In order to apply
such schemes to problems with discontinuous solutions, positivity-preserving subcell
limiting techniques should be developed, potentially taking advantage of the fact that
the tensor-product quadrature nodes on the triangle or tetrahedron define a grid on
which a low-order scheme could be constructed and blended with the high-order DSEM
in a similar manner to that employed in [167] or [168] for quadrilaterals and hexahedra.

• The convergence properties of entropy-stable high-order methods for nonlinear hyper-
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bolic systems are not fully understood, and the schemes described in this work are
not guaranteed to converge to weak solutions which satisfy the entropy inequality in
(2.8). Moreover, as discussed by Gassner et al. [175], split-form and entropy-stable
discretizations of nonlinear problems are not necessarily locally energy stable when
linearized about an arbitrary base flow, which can result in non-physical behaviour,
particularly at coarser resolutions. Further investigation is therefore required in order
to better understand and potentially overcome these limitations.
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Winters, F. Hindenlang, and G. J. Gassner, “Efficient implementation of modern
entropy stable and kinetic energy preserving discontinuous Galerkin methods for
conservation laws,” ACM Transactions on Mathematical Software, vol. 49, no. 4, pp. 1–
30, 2023.

[144] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer New
York, 1991.

[145] B. Cockburn, J. Gopalakrishnan, and R. Lazarov, “Unified hybridization of
discontinuous Galerkin, mixed, and continuous Galerkin methods for second order
elliptic problems,” SIAM Journal on Numerical Analysis, vol. 47, no. 2, pp. 1319–1365,
2009.

[146] J. Chan, “Skew-symmetric entropy stable modal discontinuous Galerkin formulations,”
Journal of Scientific Computing, vol. 81, no. 1, pp. 459–485, 2019.



References 123

[147] C. Rackauckas and Q. Nie, “DifferentialEquations.jl–a performant and feature-
rich ecosystem for solving differential equations in Julia,” Journal of Open Research
Software, vol. 5, no. 1, article no. 15, 2017.

[148] H. Xiao and Z. Gimbutas, “A numerical algorithm for the construction of efficient
quadrature rules in two and higher dimensions,” Computers & Mathematics with
Applications, vol. 59, no. 2, pp. 663–676, 2010.
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ton, “On the entropy projection and the robustness of high order entropy stable
discontinuous Galerkin schemes for under-resolved flows,” Frontiers in Physics, vol. 10,
2022.

[166] W. Pazner and P.-O. Persson, “Analysis and entropy stability of the line-based
discontinuous Galerkin method,” Journal of Scientific Computing, vol. 80, no. 1,
pp. 376–402, 2019.
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