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Abstract

We introduce discontinuous spectral-element methods of arbitrary order that are well balanced,
conservative of mass, and conservative or dissipative of total energy (i.e., a mathematical entropy
function) for a covariant flux formulation of the rotating shallow water equations with variable
bottom topography on curved manifolds such as the sphere. The proposed methods are based
on a skew-symmetric splitting of the tensor divergence in covariant form, which we implement
and analyze within a general flux-differencing framework using tensor-product summation-by-parts
operators. Such schemes are proven to satisfy semi-discrete mass and energy conservation on
general unstructured quadrilateral grids in addition to well balancing for arbitrary continuous
bottom topographies, with energy dissipation resulting from a suitable choice of numerical interface
flux. Furthermore, the proposed covariant formulation permits an analytical representation of
the geometry and associated metric terms while satisfying the aforementioned entropy stability,
conservation, and well-balancing properties without the need to approximate the metric terms so as
to enforce discrete metric identities. Numerical experiments on cubed-sphere grids are presented in
order to verify the schemes’ structure-preservation properties as well as to assess their accuracy and
robustness within the context of several standard test cases characteristic of idealized atmospheric
flows. Our theoretical and numerical results support the further development of the proposed
methodology towards a full dynamical core for numerical weather prediction and climate modelling,
as well as broader applications to other hyperbolic and advection-dominated systems of partial
differential equations on curved manifolds.

Keywords: Entropy stability, summation-by-parts, discontinuous Galerkin, geophysical fluid
dynamics, hyperbolic partial differential equations, manifolds
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1. Introduction

The development of efficient, robust, and flexible numerical methods for solving the shallow
water equations in spherical geometry constitutes an important early step in the development of a
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new dynamical core for the atmosphere or ocean component of a global weather or climate model,
with verification through shallow water test cases (for example, those proposed by Williamson et
al. [1], Galewsky et al. [2], and Läuter et al. [3]) serving as an important precursor to the solution of
more complex geophysical flow problems. Consisting of a scalar equation for mass conservation and
a vector equation for momentum conservation, the spherical shallow water equations also represent a
prototypical example of a nonlinear hyperbolic system of balance laws on a curved manifold, thereby
facilitating the development of methods and algorithms applicable to a broad class of similar partial
differential equations arising in various scientific and engineering disciplines. Offering excellent
parallel scalability and geometric flexibility as well as the ability to achieve low dissipative and
dispersive errors on relatively coarse grids, high-order continuous and discontinuous spectral-element
methods represent attractive choices for solving such systems of equations and have therefore been
a major focus of recent advances in the development of next-generation numerical methods for
global weather and climate models. Foundational contributions by Taylor et al. [4] and Giraldo et
al. [5] on continuous Galerkin (CG) and discontinuous Galerkin (DG) methods, respectively,1 for
the spherical shallow water equations have now expanded to the development of three-dimensional
nonhydrostatic atmospheric models based on such schemes at major modelling centres worldwide.

A major barrier to the widespread adoption of spectral-element approaches, and high-order
methods more broadly, is that their efficiency often comes at the price of robustness for nonlinear
problems as a result of their inherently low numerical dissipation, which renders such methods
susceptible to aliasing-driven instabilities and nonphysical oscillations introduced by under-resolved
high-frequency components of the numerical solution. As discussed in the context of atmospheric
modelling by Marras et al. [6], continuous as well as discontinuous spectral-element methods typically
achieve robustness in practice through the use of ad hoc stabilization techniques such as modal
filtering or artificial viscosity, which must be tuned carefully in order to avoid introducing excessive
dissipative error into the numerical solution. Alternatively, overintegration techniques involving the
use of a larger number of quadrature points than required for a linear problem (see, for example,
Kirby and Karniadakis [7] and Mengaldo et al. [8]) can be used to reduce aliasing for nonlinear
problems. However, overintegration significantly increases a scheme’s computational expense, does
not generally provide any theoretical assurance of stability, and has been shown to be insufficient in
certain cases when applied to under-resolved discretizations of compressible flows (see, for example,
Gassner et al. [9] and Winters et al. [10]).

Tracing their origins to the early work of Kreiss and Scherer [11] and Tadmor [12] as well as
more recent developments by LeFloch et al. [13], Fisher [14], and Gassner [15], modern structure-
preserving numerical methods based on summation-by-parts (SBP) operators have evolved into
a powerful algebraic framework for the construction of schemes which overcome the robustness
issues traditionally afflicting high-order discretizations. These developments are reviewed within
the context of discontinuous spectral-element methods applied to computational fluid dynamics by
Gassner and Winters [16], with the two key components being a discrete derivative operator which
mimics integration by parts (i.e., satisfies the SBP property) and a modified approximation of the flux
divergence based on a consistent skew-symmetric splitting or a flux-differencing formulation based
on specially chosen finite-volume-like fluxes coupling pairs of quadrature points. Such two-point

1In this paper, we use the term spectral-element method in a general sense to denote any high-order element-based
discretization, whether or not it is derived from a standard Galerkin procedure, and whether or not a collocated nodal
basis is used. This family of methods includes standard nodal and modal DG and CG schemes as special cases.
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flux functions can be tailored so as to reduce aliasing as well as preserve certain properties of the
continuous problem, including conservation or dissipation of mathematical entropy (a strictly convex
function generalizing the notion of thermodynamic entropy, corresponding, for example, to the total
energy for a shallow water system).

Although entropy-stable discretizations have recently been developed for two-dimensional geo-
physical flow models based on the vector-invariant form of the spherical shallow water equations (see,
for example, Ricardo et al. [17]), as well as for three-dimensional atmospheric models based on a
Cartesian flux formulation (see, for example, Waruszewski et al. [18]), to the authors’ knowledge, the
use of a covariant flux formulation has not yet been explored within a split-form or flux-differencing
framework. In the context of fluid dynamics in curved geometry, the covariant formulation involves
the evolution of the contravariant momentum components as prognostic variables and the formula-
tion of the governing equations as a system of balance laws in which divergences of tensor-valued
flux functions are formulated in terms of the covariant derivative. This allows for discretizations
to be constructed directly on curved manifolds, rather than within a higher-dimensional ambient
space, for example, solving systems on two-dimensional surfaces embedded in three-dimensional
space using two, rather than three, momentum equations. When extending such formulations to
three-dimensional atmospheric models, the covariant form then allows for separation of the horizontal
dynamics from the vertical dynamics, where the latter require special numerical treatment due to the
finer mesh spacing and fast wave speeds (see, for example, Baldauf [19]). Unlike the vector-invariant
form, the covariant form allows for a locally conservative treatment of the momentum balance, up to
the terms introduced by the manifold’s curvature, and does not require a specialized discretization of
the vorticity. These considerations, as well as the fact that discontinuous spectral-element methods
for nonhydrostatic atmospheric models in covariant form are the focus of several dynamical cores
currently under development for large-scale weather and climate models [19–22], motivate the
development of entropy-stable covariant formulations as a key contribution towards improving the
robustness of atmospheric simulations.

In this paper, we address the above objective of extending the SBP framework for split-form
and entropy-stable discretizations to nonlinear systems of balance laws in covariant form on curved
manifolds. Specifically, we introduce discontinuous spectral-element methods for the covariant
shallow water equations with variable bottom topography that achieve arbitrary-order accuracy
on general unstructured quadrilateral meshes and satisfy semi-discrete conservation of mass, semi-
discrete conservation or dissipation of total energy, and well balancing for a constant surface height
and zero velocity. This is achieved through a novel flux-differencing discretization of the covariant
derivative that generalizes the skew-symmetric split formulation developed by Gassner et al. [23]
and Wintermeyer et al. [24] to curved manifolds, combined with tensor-product spectral-element
operators with the SBP property, a suitable treatment of the nonconservative bottom-topography
terms, and an entropy-stable interface flux between adjacent elements.

We now outline the contents and contributions of the remainder of this paper. In Section 2, we
focus on the continuous problem, introducing the necessary notation and definitions for working
with vectors and tensors on manifolds, the formulation and entropy analysis of the shallow water
equations in covariant form, and the derivation of a novel skew-symmetric split form for the covariant
derivative which will serve as the starting point for constructing our discretizations. In Section 3,
we present the major components of the schemes, including the mapping from reference to physical
space, the tensor-product SBP operators, and the flux-differencing discontinuous spectral-element
formulation. In Section 4, we introduce entropy-conservative and entropy-stable two-point flux
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Figure 1: Illustration of the surface S, reference domain D, and physical element E

functions based on our proposed skew-symmetric splitting and show that the resulting schemes
are consistent and satisfy the aforementioned conservation, entropy stability, and well-balancing
properties. Numerical experiments for an unsteady analytical solution [3, Example 3], the standard
isolated mountain test described in [1, Case 5], the barotropic instability problem from [2], and the
Rossby–Haurwitz wave problem described in [1, Case 6] are presented in Section 5, demonstrating
the accuracy, structure-preserving properties, and robustness of the proposed schemes for idealized
atmospheric test cases on cubed-sphere grids.

2. Shallow water equations on manifolds

In this section, we will discuss the formulation and analysis of balance laws on manifolds, with a
specific focus on the covariant shallow water equations on general two-dimensional surfaces.

2.1. Vector and tensor notation

We begin by introducing some standard notation which will be used in the formulation of balance
laws on manifolds. In particular, we will consider the case of a two-dimensional surface S ⊂ R3

embedded within a three-dimensional ambient space, which we take to be spanned by the Cartesian
unit basis vectors ~ex, ~ey, and ~ez, and equipped with the standard Euclidean dot product and norm.

Let us now define ~X : D → E to be a smooth, bijective, and time-invariant mapping from the
standard reference domain D ⊂ R2 to the physical domain E ⊂ S, which corresponds to an element
of a non-overlapping tessellation (i.e., a mesh) of S, as illustrated in Figure 1. The space of tangent
vectors at a point on E is spanned by the covariant basis vectors, which are given by

~a1 := ∂1
~X, ~a2 := ∂2

~X, (1)

where we use ∂1 and ∂2 to denote partial derivatives with respect to the coordinates ξ1 and ξ2 on
the reference domain D, which correspond to chart coordinates on S induced by the mapping ~X.
The covariant basis vectors in (1) can be used to obtain the covariant components of the metric
tensor as Gij := ~ai · ~aj , which constitute the entries of a symmetric positive-definite (SPD) matrix

G :=

(
G11 G12

G21 G22

)
(2)
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characterizing the geometry of the manifold at a given point. The entries of the inverse matrix G−1

are likewise known as the contravariant components of the metric tensor, which we denote by Gij .
Employing the summation convention throughout this work for Latin indices repeated across

upper and lower positions, any tangent vector to S can be represented as ~v = vi~ai = v1~a1 + v2~a2 in
terms of its contravariant components vi with respect to the covariant basis vectors ~ai, or equivalently
as ~v = vi~a

i = v1~a
1 + v2~a

2 in terms of its covariant components vi with respect to the contravariant
basis vectors ~a i. Such components and bases are related by raising and lowering indices as

vi = Gijv
j ⇐⇒ vi = Gijvj , ~ai = Gij~a

j ⇐⇒ ~a i = Gij~aj , (3)

such that the Euclidean dot product and norm can be computed as ~v · ~v = viv
i and ‖~v‖ =

√
vivi,

respectively. Tensors of second order or higher can be expanded in terms of tensor products of basis
vectors, for example, as

↔
τ = τ ij~ai ⊗ ~aj , where the rules in (3) for raising and lowering indices can

be used similarly to convert between covariant, contravariant, and mixed tensor representations.
In order to differentiate a vector field ~v or second-order tensor field

↔
τ along a spatially varying

basis vector ~ak given as in (1), we require the covariant derivative, which is a tensor field with
components given by

∇kvi := ∂kv
i + Γijkv

j , ∇kτ ij := ∂kτ
ij + Γiklτ

lj + Γjklτ
il, (4)

where the Christoffel symbols of the second kind are given by

Γijk :=
1

2
Gil (∂jGkl + ∂kGjl − ∂lGjk) , (5)

and, following a standard abuse of notation, we emphasize that the operator ∇k should be taken as
applying to the entire vector field ~v or tensor field

↔
τ rather than to a single component vi or τ ij . By

construction, the covariant derivative satisfies the product rule as well as the metric compatibility
conditions

∇kGij = 0, (6)

which can be derived in a straightforward manner from (4) and (5). The integral of a function
h : E → R can be computed in reference coordinates under the change of variables∫

E
hdS =

∫
D

(h ◦ ~X)
√

detGdξ1dξ2, (7)

where, for convenience of notation, we will define J :=
√

detG and suppress composition with ~X
when it is unlikely to cause ambiguity. The reader is referred to fluid mechanics texts such as Aris
[25] or general relativity texts such as Misner et al. [26] for a more complete introduction to the
basic concepts of tensor calculus and differential geometry within the context of continuum physics.

2.2. Shallow water equations in covariant form

Denoting the depth of the fluid layer as h and the velocity vector field as ~v = vi~ai, the shallow
water equations can be formulated on a two-dimensional manifold S ⊂ R3 as

∂th+∇j(hvj) = 0, (8a)

∂t(hv
i) +∇jτ ij = −fJGijεjkhvk − ghGij∂jb, (8b)
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where t ≥ 0 is the time coordinate, g > 0 is the constant gravitational acceleration, b is the spatially
varying bottom topography, f is the spatially varying Coriolis parameter, and εjk is the Levi-Civita
symbol, which takes values of ε12 = 1, ε21 = −1, and ε11 = ε22 = 0. The contravariant components
of the momentum flux tensor are given by

τ ij := hvivj +
g

2
h2Gij . (9)

Using the definitions in (4) as well as the product rule and the repeated-index identity Γiik = (∂kJ)/J ,
we can express the divergence of the mass and momentum fluxes as

∇j(hvj) =
1

J
∂j(Jhv

j), ∇jτ ij =
1

J
∂j(Jτ

ij) + Γijkτ
jk, (10)

such that the continuity and momentum equations in (8a) and (8b), respectively, can be rewritten
using partial derivatives rather than covariant derivatives:

∂th+
1

J
∂j(Jhv

j) = 0, (11a)

∂t(hv
i) +

1

J
∂j(Jτ

ij) = −fJGijεjkhvk − ghGij∂jb− Γijkτ
jk. (11b)

The resulting system of balance laws can then be expressed as

∂tu +
1

J
∂1(Jf1) +

1

J
∂2(Jf2) = scor + sbot + sgeo, (12)

where the state vector and contravariant flux components are given by

u :=

 h
hv1

hv2

 , f1 :=

 hv1

hv1v1 + g
2h

2G11

hv2v1 + g
2h

2G21

 , f2 :=

 hv2

hv1v2 + g
2h

2G12

hv2v2 + g
2h

2G22

 , (13)

and the Coriolis, bottom topography, and geometric source terms are given, respectively, by

scor :=

 0
−fJG1jεjkhv

k

−fJG2jεjkhv
k

 , sbot :=

 0
−ghG1j∂jbb
−ghG2j∂jb

 , sgeo :=

 0
−Γ1

jkτ
jk

−Γ2
jkτ

jk

 . (14)

This form provides a natural starting point for the construction of standard DG (see, for example,
Läuter et al. [27], Bao et al. [28], and Baldauf [20]) or finite-volume methods (see, for example,
Rossmanith et al. [29] or Ullrich et al. [30]).

2.3. Entropy analysis

It is well known that continuously differentiable solutions to the shallow water equations satisfy
an additional conservation law for the total energy per unit area η := hviv

i/2 + gh(h+ b)/2, which
serves as a mathematical entropy function for the system (see, for example, Tadmor [31]). Taking the
contravariant entropy flux components to be F j := hviv

ivj/2 + gh2vj + ghbvj , such a conservation
law is given in covariant form as

∂tη +∇jF j = 0. (15)
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The corresponding entropy variables are then obtained by differentiating the entropy function with
respect to the state variables as

w :=
∂η

∂u
=

g(h+ b)− 1
2(v1v

1 + v2v
2)

v1

v2

 . (16)

While the development of a general theory for entropy analysis of hyperbolic systems on manifolds is
beyond the scope of this paper (although we note that the scalar case has been treated, for example,
by Ben-Artzi and LeFloch [32]), we will nevertheless verify that, under suitable assumptions, η is
strictly convex with respect to the state vector consisting of the fluid layer depth and contravariant
momentum components, as required for a mathematical entropy function.

Lemma 1. The mapping from u to η is strictly convex when h > 0 and G is SPD.

Proof. Differentiating the entropy variables with respect to the conservative variables, we obtain
the Hessian of the entropy function as

∂w

∂u
=

1

h

gh+ v1v
1 + v2v

2 −v1 −v2

−v1 G11 G12

−v2 G21 G22

 . (17)

The lower-right two-by-two block of the above matrix is given by G/h, which is SPD under the
present assumptions, and its Schur complement corresponds to the positive scalar g. The matrix in
(17) is therefore also SPD, which is equivalent to the strict convexity of η as a function of u.

Remark 1. Due to the role of the total energy as a mathematical entropy function, we will often refer
to the quantity η as the “entropy” for consistency with the literature on entropy-stable schemes.
We will also assume throughout our analysis that the conditions of Lemma 1 are satisfied regarding
the positivity of the fluid layer depth and the positive-definiteness of the metric.

Whereas continuously differentiable solutions conserve the integral of η within the domain S,
physically admissible weak solutions satisfy an entropy inequality of the form

d

dt

∫
S
η dS ≤ 0. (18)

Since establishing such integral balances for a system such as (11) requires the use of the product
and chain rules in space, which are not guaranteed to hold discretely, we will begin our construction
of an entropy-stable discretization with the introduction of a skew-symmetric splitting which allows
for the product and chain rules to be circumvented.

2.4. Skew-symmetric formulation

Building upon the work of Gassner et al. [23] and Wintermeyer et al. [24] within the context
of the shallow water equations in planar geometry, we prove the following lemma to obtain a
skew-symmetric splitting of the covariant-form divergence of the momentum flux.

Lemma 2. For smooth solutions, the divergence of the momentum flux in (9) can be expressed as

∇jτ ij =
1

2J

(
∂j(Jhv

ivj) + vi∂j(Jhv
j) +GikJhvj∂jvk

)
+ gGijh∂jh

+
1

2

(
Γijkhv

jvk −GikΓljkhvjvl
)
.

(19)
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Proof. Distributing the covariant derivative across the convective and pressure terms of (9) and
noting that the covariant derivative of a scalar reduces to the partial derivative, we can use the
product rule and chain rule to obtain

∇jτ ij = ∇j(hvivj) +
1

2
gh2∇jGij + ghGij∂jh, (20)

The first term on the right-hand side can then be expressed in two different ways as

∇j(hvivj) =
1

J
∂j(Jhv

ivj) + Γijkhv
jvk

=
1

J

(
vi∂j(Jhv

j) +GikJhvj∂jvk −GikΓljkhvjvl
)
,

(21)

where the first line results from the use of the second identity in (10), while the second line results
from the first identity in (10) and several applications of the product rule. Averaging the two
expressions and substituting the result into (20), we then note that the second term on the right-hand
side of (20) is zero due to the metric compatibility condition in (6). Grouping the differential and
algebraic terms therefore results in (19).

When contracting (19) with the covariant velocity components and manipulating the indices
using (3), the geometric source terms cancel as

vi(Γ
i
jkhv

jvk −GikΓljkhvjvl) = viΓ
i
jkhv

jvk − vkΓljkhvjvl = 0, (22)

resulting in an expression analogous to that obtained in flat (i.e., Euclidean) space:

vi∇jτ ij =
1

2J

(
vi∂j(Jhv

ivj) + viv
i∂j(Jhv

j) + Jhvivj∂jvi
)

+ vjgh∂jh, (23)

allowing for an integral entropy balance to be derived purely using integration by parts in reference
space, a procedure which, as we will see in the following section, is straightforward to mimic at the
semi-discrete level. We therefore rewrite the momentum equations in (11b) as

∂t(hv
i)+

1

2J

(
∂j(Jhv

ivj) + vi∂j(Jhv
j) +GikJhvj∂jvk

)
+ gGijh∂j(h+ b)

= −fJGijεjkhvk −
1

2

(
Γijkhv

jvk −GikΓljkhvjvl
)
,

(24)

which constitutes the skew-symmetric form of the momentum balance. Together with the continuity
equation (8a), this form of the equations will be used in the construction of the entropy-stable
discretizations proposed in this work.

Remark 2. To the authors’ knowledge, skew-symmetric formulations for nonlinear balance laws in
covariant form have not been proposed prior to this work.

3. Discontinuous spectral-element methods

In this section, we will introduce the main components of the spatial discretization framework
adopted in this paper, which involves the application of flux-differencing discontinuous spectral-
element methods using tensor-product SBP operators to the spatial discretization of balance laws
in covariant form.
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3.1. Spherical quadrilateral mapping

Let us assume that S is a spherical shell of radius a, and consider a global Cartesian coordinate
system with its origin at the centre of the sphere. The sphere is tessellated to construct a conforming
mesh of curved quadrilateral elements, which can be arbitrary in topology. For each mesh element
E ⊂ S, we then let ~x1, ~x2, ~x3, ~x4 denote position vectors from the origin to four distinct points on S
defining the corners of a curved element bounded by segments of four great circles. If ξ1, ξ2 ∈ [−1, 1]
denote coordinates on the reference quadrilateral D ⊂ R2, the position vector from the origin to the
corresponding point on E is then given by

~X(ξ1, ξ2) := a
~xe(ξ

1, ξ2)

‖~xe(ξ1, ξ2)‖
, (25)

where, following Guba et al. [33, Appendix A], we define the bilinear mapping

~xe(ξ
1, ξ2) :=

1

4

(
(1− ξ1)(1− ξ2)~x1 + (1 + ξ1)(1− ξ2)~x2

+ (1 + ξ1)(1 + ξ2)~x3 + (1− ξ1)(1 + ξ2)~x4

) (26)

and note that a similar approach is taken in the case of triangular elements in [27] and [20].
Differentiating (25) as in (1), the covariant basis vectors can then be computed analytically as

~ai(ξ
1, ξ2) =

a

‖~xe(ξ1, ξ2)‖

(
∂i~xe(ξ

1, ξ2)− ~xe(ξ
1, ξ2) · ∂i~xe(ξ1, ξ2)

‖~xe(ξ1, ξ2)‖2
~xe(ξ

1, ξ2)

)
(27)

and used to analytically compute the covariant metric components, contravariant metric components,
contravariant basis vectors, and Christoffel symbols. We will commonly use x, y, and z to denote
the Cartesian coordinates of position vectors ~x = x~ex + y~ey + z~ez relative to a right-handed
coordinate system with its origin at the centre of the sphere. If the positive x axis points towards
a longitude of λ = 0 and the positive z axis points towards a latitude of θ = π/2, the spherical
coordinates corresponding to a position vector ~x can be computed in radians as λ = arctan2(y, x)
and θ = arcsin(z/a), where we note that a2 = ‖~x‖2 = x2 + y2 + z2 and that the two-argument
arctangent function is used such that −π ≤ λ ≤ π. In contrast with the common practice of using a
global spherical coordinate system to represent the covariant and contravariant basis vectors, we
represent such bases using the aforementioned global Cartesian coordinate system. Tangent vectors
such as the velocity or momentum can therefore be transformed between local contravariant and
global Cartesian component representations as(

v1

v2

)
=

(
~ex · ~a 1 ~ey · ~a 1 ~ez · ~a 1

~ex · ~a 2 ~ey · ~a 2 ~ez · ~a 2

)vxvy
vz

 ,

vxvy
vz

 =

~ex · ~a1 ~ex · ~a2

~ey · ~a1 ~ey · ~a2

~ez · ~a1 ~ez · ~a2

(v1

v2

)
, (28)

where the above transformation matrices are well defined at all points on S. This avoids the issue
of representing vectors which are nonzero at the poles with respect to a spherical basis.

3.2. Spectral-element approximation

To construct a spectral-element spatial discretization on the reference quadrilateral D, we will
approximate the state vector u by a tensor-product polynomial expansion of the form

u( ~X(ξ1, ξ2), t) ≈
N∑
i=0

N∑
j=0

uij(t)`i(ξ
1)`j(ξ

2), (29)
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where the Lagrange polynomials corresponding to the nodes {ξi}Ni=0 ⊂ [−1, 1] are given by

`i(ξ) :=

N∏
m=0,m6=i

ξ − ξm
ξi − ξm

, i ∈ {0, . . . , N}, (30)

and uij(t) ≈ u( ~X(ξi, ξj), t) are the vector-valued nodal coefficients. In this work, we employ the
Legendre–Gauss–Lobatto (LGL) quadrature points, which include both endpoints of the reference
interval, and correspond to positive quadrature weights, which we denote by {ωi}Ni=0. We can then
use such a quadrature rule to approximate integrals under the change of variables in (7) as∫

E
hdS ≈ IE [h] :=

N∑
i,j=0

ωiωjJijhij (31)

where the double subscript (·)ij denotes a quantity evaluated at reference coordinates (ξi, ξj). By
summing (31) over all elements, we can similarly approximate integrals over the global domain S as∫

S
hdS ≈ IS [h] :=

∑
E⊂S

IE [h]. (32)

Discrete integrals such as those in (31) and (32) will be used extensively in our theoretical analysis
and numerical verification of the schemes developed in this paper.

3.3. Summation-by-parts operators

Adopting a zero-based indexing convention for discretization matrices, the entries of the colloca-
tion derivative matrix D and diagonal mass matrix M corresponding to the Lagrange polynomials
{`i}Ni=0 and quadrature weights {ωi}Ni=0 are given by

Dij :=
d`j
dξ

∣∣∣∣
ξ=ξi

, Mij := ωiδij , i, j ∈ {0, . . . , N}. (33)

Defining the matrices Q := MD and B := diag(−1, 0, . . . , 0, 1), it was shown by Gassner [15] that
the SBP property

Q + QT = B (34)

is satisfied for collocated spectral-element operators based on LGL quadrature, mimicking the
continuous integration-by-parts formula in one spatial dimension, which is given by∫ 1

−1
u

dv

dξ
dξ +

∫ 1

−1

du

dξ
v dξ = uv

∣∣∣1
−1
. (35)

We also note that the mass matrix M is guaranteed to be SPD due to the positivity of the LGL
quadrature weights and that the following identity holds due to the exact differentiation of constant
functions:

N∑
m=0

Dim = 0, i ∈ {0, . . . , N}. (36)

While we use collocated spectral-element operators in this work, the theory applies to any operators
satisfying (34) and (36), including the finite-difference SBP schemes described, for example, in the
review papers by Del Rey Fernández [34] and Svärd and Nordström [35].
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3.4. Flux-differencing discretization

The discretizations developed in this work will be formulated within the general framework of a
nonconservative, variable-coefficient flux-differencing formulation, building on prior work by Renac
[36], Waruszewski et al. [18], and Rueda-Ramı́rez et al. [37]. Defining the skew-symmetric matrix
S := 2Q−B, a flux-differencing tensor-product spatial discretization is given by

ωiωjJij
d

dt
uij = ωj

(
−

N∑
m=0

Sim(Jf1)#
ij,mj + δi0(Jf1)∗0j,0j+ − δiN (Jf1)∗Nj,Nj+

)

+ ωi

(
−

N∑
m=0

Sjm(Jf2)#
ij,im + δj0(Jf2)∗i0,i0+ − δjN (Jf2)∗iN,iN+

)
+ ωiωjJijsij ,

(37)

where we have suppressed the explicit dependence on time. Here, flux differencing refers to the
use of two-point volume flux functions (Jf1)#

L,R and (Jf2)#
L,R as well as interface flux functions

(Jf1)∗L,R and (Jf2)∗L,R, which depend on data from arbitrary “left” and “right” states (·)L and (·)R,
and are permitted in this work to be non-symmetric and depend on auxiliary nodal data such as the
metric tensor components and bottom topography. Any index with a “+” superscript denotes an
external state transformed from an adjacent element, where the local-to-global and global-to-local
transformations in (28) are combined to form the matrix

AR→L :=

(
~ex · ~a 1 ~ey · ~a 1 ~ez · ~a 1

~ex · ~a 2 ~ey · ~a 2 ~ez · ~a 2

)
L

~ex · ~a1 ~ex · ~a2

~ey · ~a1 ~ey · ~a2

~ez · ~a1 ~ez · ~a2


R

, (38)

which transforms the contravariant representation of the momentum vector with respect to the local
coordinate system at (·)R into the corresponding local coordinate system at (·)L.

Remark 3. To simplify our notation and analysis, we will assume that for all interface fluxes, the
state vectors on both sides have been transformed so as to include momentum components with
respect to the coordinate system associated with the first subscript, corresponding to the interior
state, and all geometric quantities used in the flux are evaluated on that side of the interface.

Using the SBP property in (34) as well as the row-sum identity in (36), the weak-form flux-
differencing discretization in (37) can be rewritten in strong form as

d

dt
uij =− 1

Jij

N∑
m=0

2Dim(Jf1)#
ij,mj −

1

Jij

N∑
m=0

2Djm(Jf2)#
ij,im + sij

+
δi0

Jijωiωj

[
(Jf1)∗0j,0j+ − (Jf1)0j

]
− δiN
Jijωiωj

[
(Jf1)∗Nj,Nj+ − (Jf1)Nj

]
+

δj0
Jijωiωj

[
(Jf2)∗i0,i0+ − (Jf2)i0

]
−

δjN
Jijωiωj

[
(Jf2)∗iN,iN+ − (Jf2)iN

]
,

(39)

where we have assumed that two-point flux functions are consistent with (12) such that (Jf)#
ij,ij =

(Jf)∗ij,ij = (Jf)ij . The first line of (39) can then be interpreted as a discretization of the governing
equations on a given element, while the second and third lines consist of penalty terms (often
referred to as simultaneous approximation terms in the SBP literature, following Carpenter et
al. [38]) which weakly impose the coupling between adjacent elements. Although the weak form
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in (37) yields a simpler and more efficient implementation and is more easily amenable to entropy
analysis, the strong form will be useful in demonstrating consistency and well balancing of the
proposed discretizations. Finally, we note that in the specific case that the two-point fluxes are
taken to be

(Jf1)#
L,R :=

1

2

[
(Jf1)L + (Jf1)R

]
, (Jf2)#

L,R :=
1

2

[
(Jf2)L + (Jf2)R

]
, (40)

and the source term is taken as s := scor + sbot + sgeo, the resulting scheme is equivalent to a
standard tensor-product DG method based on collocated LGL quadrature, which is given in weak
form by

ωiωjJij
d

dt
uij = ωj

(
N∑
m=0

Qmi(Jf
1)mj + δi0(Jf1)∗0j,0j+ − δiN (Jf1)∗Nj,Nj+

)

+ ωi

(
N∑
m=0

Qmj(Jf
2)im + δj0(Jf2)∗i0,i0+ − δjN (Jf2)∗iN,iN+

)
+ ωiωjJijsij .

(41)

In the following section, we will construct novel formulations of the volume flux, interface flux, and
source term so as to ensure consistency, mass conservation, entropy stability, and well balancing of
the resulting spatial discretization.

4. Entropy-stable covariant formulation

Considering the semi-discrete entropy balance on a single element, we can use (31) and apply
the chain rule in time to obtain

d

dt

∫
E
η dS ≈ d

dt
IE [η] =

N∑
i,j=0

ωiωjJijw
T
ij

d

dt
uij , (42)

where wij denotes the vector of entropy variables in (16) evaluated in terms of the discrete nodal
coefficients uij . In this section, we will develop an approach for constructing flux-differencing
discretizations which satisfy a semi-discrete form of (18) by ensuring that the time derivative of IE [η]
is bounded from above by telescoping interface terms, leading to a semi-discrete bound on the entropy
integrated numerically over the global domain S. We will also show that the resulting discretizations
are conservative of mass and well balanced for arbitrary continuous bottom topographies, preserving
a constant surface height and zero velocity.

4.1. Entropy-conservative and entropy-stable two-point flux functions

Our next step is to discretize the skew-symmetric formulation proposed in Section 2.4 within the
flux-differencing framework introduced in Section 3.4. The following lemma presents a two-point
flux, which, when used with an appropriate formulation of the source term, accomplishes this task.

Lemma 3. Taking the volume flux and interface flux terms in (37) to be

(Jf j)#
L,R :=

 1
2

[
(Jhvj)L + (Jhvj)R

]
1
4

[
(Jhvjv1)L + (Jhvjv1)R + (Jhvj)R(v1)L + (G1kJhvj)L(vk)R

]
1
4

[
(Jhvjv2)L + (Jhvjv2)R + (Jhvj)R(v2)L + (G2kJhvj)L(vk)R

]


+

 0
g
2(G1jJh)LhR
g
2(G2jJh)LhR

+

 0
g
2(G1jJh)L(bR − bL)
g
2(G2jJh)L(bR − bL)

 (43)
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results in a consistent discretization of (11) when the source term is given by

s :=

 0
−1

2

(
Γ1
jkhv

jvk −G1kΓljkhv
jvl
)
− fJG1jεjkhv

k

−1
2

(
Γ2
jkhv

jvk −G2kΓljkhv
jvl
)
− fJG2jεjkhv

k

 . (44)

Proof. Considering the equivalent strong form in (39), we first note that when all interface states are
expressed consistently within a given local coordinate system, the flux differences which constitute the
surface terms vanish for globally continuous solutions. Similarly to [9, Lemma 1], the flux-differencing
volume terms can be rewritten as

N∑
m=0

2Dim(Jf1)#
ij,mj =

N∑
m=0

 Dim(Jhv1)mj
1
2

[
Dim(Jhv1v1)mj + (v1)ijDim(Jhv1)mj + (G1kJhv1)ijDim(vk)mj

]
1
2

[
Dim(Jhv1v2)mj + (v2)ijDim(Jhv1)mj + (G2kJhv1)ijDim(vk)mj

]


+
N∑
m=0

 0
g(JG11h)ijDim(h+ b)mj
g(JG21h)ijDim(h+ b)mj

 (45)

and

N∑
m=0

2Djm(Jf2)#
ij,im =

N∑
m=0

 Djm(Jhv2)im
1
2

[
Djm(Jhv2v1)im + (v1)ijDjm(Jhv2)im + (G1kJhv2)ijDjm(vk)im

]
1
2

[
Djm(Jhv2v2)im + (v2)ijDjm(Jhv2)im + (G2kJhv2)ijDjm(vk)im

]


+

N∑
m=0

 0
g(JG12h)ijDjm(h+ b)im
g(JG22h)ijDjm(h+ b)im

 , (46)

where we have used the fact that terms of the form Dim(·)ij and Djm(·)ij do not contribute to sums
over m as a consequence of (36). After dividing by Jij , we then see that the right-hand sides of
(45) and (46) correspond directly to the differential operators appearing in the skew-symmetric
formulation, with the partial derivatives in (11a) and (24) replaced by nodal approximations using
the SBP derivative matrix in (33). Noting that the momentum source terms in (44) are identical to
those appearing on the right-hand side of (24), the result therefore follows from Lemma 2 and the
consistency of the spectral-element derivative approximation.

Remark 4. In the special case of the Euclidean metric Gij = δij , the two-point flux in (43) is the
same as that proposed in [24, Eq. (4.3)] for the shallow water equations in planar geometry. We
also note that in addition to making use of split-form approximation of the covariant derivative, the
bottom topography term gGij∂jb/2 is treated as a nonconservative contribution to the two-point
flux in (43) rather than as a pointwise source term.

Next, we present the following lemma establishing that the proposed flux is entropy conservative
in the sense that it satisfies a particular shuffle condition, also known as a non-symmetric Tadmor
condition (borrowing terminology from Chan et al. [39] with reference to [12]), which we will employ
in the following subsection to establish entropy stability of the resulting scheme.

Lemma 4. The two-point flux in (43) is entropy conservative, satisfying the shuffle condition

wT
R(Jf j)#

R,L −wT
L(Jf j)#

L,R = (JΨ j)R − (JΨ j)L, (47)

where the contravariant flux potential components are given by Ψ j := wTf j − F j = gh2vj/2.
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Proof. If we first consider the case of b = 0 and recall the definition of the entropy variables in (16),
the left-hand side of (47) can be expanded term-by-term as

wT
R(Jf j)#

R,L −wT
L(Jf j)#

L,R =
g

2
hR(Jhvj)L︸ ︷︷ ︸

(A)

−g
2
hL(Jhvj)L +

g

2
hR(Jhvj)R −

g

2
hL(Jhvj)R︸ ︷︷ ︸

(B)

− 1

4
(viv

i)R(Jhvj)L︸ ︷︷ ︸
(C)

+
1

4
(viv

i)L(Jhvj)L︸ ︷︷ ︸
(D)

− 1

4
(viv

i)R(Jhvj)R︸ ︷︷ ︸
(E)

+
1

4
(viv

i)L(Jhvj)R︸ ︷︷ ︸
(F )

+
1

4
(vi)R(Jhvivj)R︸ ︷︷ ︸

(E)

− 1

4
(vi)L(Jhvivj)L︸ ︷︷ ︸

(D)

+
1

4
(vi)R(Jhvivj)L︸ ︷︷ ︸

(G)

− 1

4
(vi)L(Jhvivj)R︸ ︷︷ ︸

(H)

+
1

4
(vi)R(Jhvj)L(vi)R︸ ︷︷ ︸

(C)

− 1

4
(vi)L(Jhvj)R(vi)L︸ ︷︷ ︸

(F )

+
1

4
(vi)R(GikJhvj)R(vk)L︸ ︷︷ ︸

(H)

− 1

4
(vi)L(GikJhvj)L(vk)R︸ ︷︷ ︸

(G)

+
g

2
(vi)R(GijJh)RhL︸ ︷︷ ︸

(B)

− g
2

(vi)L(GijJh)LhR︸ ︷︷ ︸
(A)

.

(48)

Noting the cancellation of pairs labelled (A) through (H), we see that the remaining terms constitute
the right-hand side of (47). Next, incorporating the influence of the bottom topography b within
the entropy variables as well as the two-point fluxes, we obtain

wT
R(Jf j)#

R,L −wT
L(Jf j)#

L,R = (JΨ j)R − (JΨ j)L +
g

2
bR(Jhvj)L︸ ︷︷ ︸

(A)

− g
2
bL(Jhvj)L︸ ︷︷ ︸

(B)

+
g

2
bR(Jhvj)R︸ ︷︷ ︸

(C)

− g

2
bL(Jhvj)R︸ ︷︷ ︸

(D)

+
g

2
(vi)R(GijJh)RbL︸ ︷︷ ︸

(D)

− g
2

(vi)L(GijJh)LbR︸ ︷︷ ︸
(A)

− g

2
(vi)R(GijJh)RbR︸ ︷︷ ︸

(C)

+
g

2
(vi)L(GijJh)LbL︸ ︷︷ ︸

(B)

,

(49)
where, similarly to (48), the pairs labelled (A) through (D) cancel, again resulting in (47) when the
effect of variable bottom topography is included.

At element interfaces, we augment the entropy-conservative flux in (43) with local Lax–Friedrichs
dissipation applied to the jump in the conservative variables in order to obtain

(Jf j)∗L,R := (Jf j)#
L,R −

JL
2

max(λjL, λ
j
R)(uR − uL), (50)

where the contravariant wave speed estimate is computed by evaluating the spectral radius of the
flux Jacobian ∂f j/∂u as

λj :=
∣∣vj∣∣+

√
ghGjj (51)

for which derivations can be found, for example, in [20, Appendix D] and [21, Appendix E]. Following
Ranocha’s analysis in [40, Section 6.1], one can show that the resulting numerical interface flux in
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(50) is entropy stable, satisfying

wT
R(Jf j)∗R,L −wT

L(Jf j)∗L,R ≤ (JΨ j)R − (JΨ j)L (52)

when h > 0 and the bottom topography b is continuous across element interfaces.

Remark 5. For discontinuous bottom topographies, the local Lax–Friedrichs dissipation must be
applied to the jump in entropy variables, resulting in an interface flux of the form

(Jf j)∗L,R := (Jf j)#
L,R −

JL
2

max(λjL, λ
j
R)HL,R(wR −wL), (53)

where HL,R is SPD (or, at least, symmetric positive semi-definite) and typically corresponds to the
evaluation of ∂u/∂w at an average between the two states. The construction of such a dissipation
term was explored in detail by Ranocha [41] in the context of the planar shallow water equations.

4.2. Mass conservation

Noting that the two-point mass flux (Jhvj)#
L,R corresponding to the first entry of (43) is simply

an arithmetic mean, it follows that the resulting flux-differencing discretization of the continuity
equation is identical to that used by the standard DG method recovered in (41). While we therefore
expect Baldauf’s proof of conservation in [20, Appendix E] to extend to the present formulation, we
will proceed more generally with the following theorem, which applies to any symmetric two-point
flux for a scalar variable discretized in flux form.

Theorem 1. If mass flux components (Jhv1)#
L,R and (Jhv2)#

L,R are symmetric with respect to (·)L
and (·)R, and the corresponding entry in the source term vector s is zero, the semi-discrete mass
balance on a single element is then given for the scheme in (37) by

d

dt
IE [h] =

N∑
j=0

ωj

[
(Jhv1)∗0j,0j+ − (Jhv1)∗Nj,Nj+

]
+

N∑
i=0

ωi

[
(Jhv2)∗i0,i0+ − (Jhv2)∗iN,iN+

]
, (54)

where (Jhv1)∗L,R and (Jhv2)∗L,R are the corresponding interface flux components for the continuity
equation.

Proof. Considering the component of (37) corresponding to the continuity equation and summing
over all quadrature nodes, we obtain

d

dt
IE [h] =

N∑
j=0

ωj

− N∑
i,m=0

Sim(Jhv1)#
ij,mj +

N∑
i=0

[
δi0(Jhv1)∗0j,0j+ − δiN (Jhv1)∗Nj,Nj+

]
+

N∑
i=0

ωi

− N∑
j,m=0

Sjm(Jhv2)#
ij,im +

N∑
j=0

[
δj0(Jhv2)∗i0,i0+ − δjN (Jhv2)∗iN,iN+

] ,

(55)

due to the absence of source terms in the mass balance. Noting that the right-hand side of (54)
results from summing over the Kronecker delta, we must show that the contributions from the
flux-differencing volume terms vanish. Using the SBP property in (34) to obtain

S = Q−QT, (56)
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we can rewrite the contribution on the first line of (55) as

N∑
i,m=0

Sim(Jhv1)#
ij,mj =

N∑
i,m=0

Qim(Jhv1)#
ij,mj −

N∑
i,m=0

Qmi(Jhv
1)#
ij,mj , (57)

where the first and second terms on the right-hand side cancel when the two-point mass flux is
symmetric with respect to its two subscripts. Applying an analogous procedure to the volume term
on the second line of (55), we therefore obtain (54).

The right-hand side of (54) is a discretization of the line integral of the inward normal component
of the numerical mass flux over the boundary of the quadrilateral element. To show that the scheme
is globally conservative of mass, we proceed similarly to [20, Appendix E] under the assumption that
every node on the boundary of the element E, associated with the state (·)L, coincides in physical
space with a node on the boundary of an adjacent element, associated with the state (·)R, for which
the corresponding quadrature weight is equal to that associated with (·)L. Summing (54) over all
elements to obtain the global integral in (32) and considering the contribution to the right-hand side
from each pair of coincident interface nodes, we see that the discretization is globally conservative
when the interface mass fluxes cancel as

(Jhvj)∗L,R(nj)L = −(Jhvj)∗R,L(nj)R (58)

for all coincident pairs of interface nodes, where nj denotes the jth component of the outward unit
normal vector in reference coordinates. Recalling from Remark 3 that evaluating the left-hand side
of (58) requires transforming the momentum vector at (·)R into the (·)L coordinate system, while
the right-hand side requires transforming the momentum vector at (·)L into the (·)R coordinate
system, it follows that the resulting discretization is conservative across element interfaces if the
transformation matrices in (38) satisfy

AL→R = A−1
R→L, (59)

which is the case when the manifold is smooth and the covariant and contravariant basis vectors are
computed analytically, as described in Section 3.1.

Remark 6. In addition to the element-wise conservation property established above, the flux-
differencing discretization in (37) satisfies conservation of mass at the nodal level for any symmetric
two-point mass flux. This property follows from the results of Fisher et al. [42, 43] and Carpenter et
al. [44], who showed that flux-differencing formulations using diagonal-norm SBP operators including
boundary nodes, such as those used in our LGL-based discontinuous spectral-element method, can
be expressed in an equivalent telescoping flux form compatible with the Lax–Wendroff theorem when
combined with symmetric two-point fluxes within a one-dimensional or tensor-product discretization.
The existence of such an equivalence is important for the use of subcell limiting techniques (see, for
example, Rueda-Ramı́rez et al. [45]).

4.3. Entropy conservation and entropy stability

We now introduce the following definitions for the numerical entropy flux and entropy production
terms, which will be used to facilitate the semi-discrete entropy analysis of the covariant-form
discretization through a similar approach to that employed in [37] for discretizations of standard
Cartesian formulations of nonconservative systems.
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Definition 1. The numerical entropy flux between two states (·)L and (·)R on each side of an
element interface is given by

(JF j)∗L,R :=
1

2

[
wT
L(Jf j)∗L,R + wT

R(Jf j)∗R,L

]
− 1

2

[
(JΨ j)L + (JΨ j)R

]
. (60)

The numerical entropy production terms associated with pairs of volume or interface nodes are
given, respectively, by

rj#L,R :=
[
wT
R(Jf j)#

R,L −wT
L(Jf j)#

L,R

]
−
[
(JΨ j)R − (JΨ j)L

]
, (61a)

rj∗L,R :=
[
wT
R(Jf j)∗R,L −wT

L(Jf j)∗L,R

]
−
[
(JΨ j)R − (JΨ j)L

]
. (61b)

Remark 7. The entropy conservation and entropy stability conditions in (47) and (52) correspond

to rj#L,R = 0 and rj∗L,R ≤ 0, respectively.

Besides the entropy conservation and entropy stability properties of the two-point flux functions,
our proofs of entropy conservation and entropy stability will make use of the fact that the source
term yields zero net contribution to the entropy balance, which is established as follows.

Lemma 5. The source term in (44) satisfies wTs = 0.

Proof. Contracting the source term in (44) with the vector of entropy variables results in

wTs = −vi
(

1

2
Γijkhv

jvk − 1

2
GikΓljkhv

jvl + fJGijεjkhv
k

)
. (62)

Noting that the contravariant metric tensor components in the last two terms in parentheses raise the
covariant index in vi to obtain the contravariant components vk and vj , respectively, the contribution
from the geometric source term then vanishes as in (22), while the contribution from the Coriolis
term vanishes due to the skew-symmetry of the Levi-Civita symbol.

We now present the main result of this section, establishing the semi-discrete entropy balance.

Theorem 2. Using the numerical entropy flux and production terms introduced in Definition 1, the
time rate of change in the mathematical entropy integrated over a given element is given for the
spatial discretization in (37) by

d

dt
IE [η] =

N∑
j=0

ωj

[
(JF 1)∗0j,0j+ − (JF 1)∗Nj,Nj+

]
+

N∑
i=0

ωi

[
(JF 2)∗i0,i0+ − (JF 2)∗iN,iN+

]

+
1

2

N∑
j=0

ωj

(
r1∗

0j+,0j + r1∗
Nj,Nj+

)
+

1

2

N∑
i=0

ωi

(
r2∗
i0+,i0 + r2∗

iN,iN+

)

+
N∑

i,j,m=0

ωiωj

(
Dimr

1#
ij,mj +Djmr

2#
ij,im

)
.

(63)
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Proof. Contracting both sides of (37) with the vector of entropy variables wij and summing over
all quadrature nodes, we obtain

d

dt
IE [η] =

N∑
j=0

ωj

− N∑
i,m=0

wT
ijSim(Jf1)#

ij,mj +

N∑
i=0

wT
ij

[
δi0(Jf1)∗0j,0j+ − δiN (Jf1)∗Nj,Nj+

]
+

N∑
i=0

ωi

− N∑
j,m=0

wT
ijSjm(Jf2)#

ij,im +
N∑
j=0

wT
ij

[
δj0(Jf2)∗i0,i0+ − δjN (Jf2)∗iN,iN+

]
+

N∑
i,j=0

ωiωjJijw
T
ijsij .

(64)

Considering the contribution from the flux-differencing volume term on the first line of (64) and
using (56), we can use the definition of the entropy production term in (61a) to obtain

N∑
i,m=0

wT
ijSim(Jf1)#

ij,mj =

N∑
i,m=0

wT
ij(Qim −Qmi)(Jf1)#

ij,mj

=
N∑

i,m=0

Qim

[
wT
ij(Jf

1)#
ij,mj −wT

mj(Jf
1)#
mj,ij

]

=

N∑
i,m=0

Qim

[
(JΨ1)mj − (JΨ1)ij − r1#

ij,mj

]

=
N∑

i,m=0

Qim(JΨ1)mj −
N∑
i=0

(JΨ1)ij

N∑
m=0

Qim −
N∑

i,m=0

Qimr
1#
ij,mj

= (JΨ1)Nj − (JΨ1)0j −
N∑

i,m=0

ωiDimr
1#
ij,mj ,

(65)

where the final equality results from the properties in (34) and (36) as well as the definition of Q.
Following the same procedure for the flux-differencing term on the second line of (64), we likewise
obtain

N∑
j,m=0

wT
ijSjm(Jf2)#

ij,im = (JΨ2)iN − (JΨ2)i0 −
N∑

j,m=0

ωjDjmr
2#
ij,im. (66)

We now turn our attention to the interface terms, which contract with the entropy variables as

N∑
i=0

wT
ij

[
δi0(Jf1)∗0j,0j+ − δiN (Jf1)∗Nj,Nj+

]
= (JΨ1)0j − (JΨ1)Nj

+ (JF 1)∗0j,0j+ − (JF 1)∗Nj,Nj+ +
1

2

(
r1∗

0j+,0j + r1∗
Nj,Nj+

) (67)

and
N∑
j=0

wT
ij

[
δj0(Jf2)∗i0,i0+ − δjN (Jf2)∗iN,iN+

]
= (JΨ2)i0 − (JΨ2)iN

+ (JF 2)∗i0,i0+ − (JF 2)∗iN,iN+ +
1

2

(
r2∗
i0+,i0 + r2∗

iN,iN+

)
,

(68)
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where we have used Lemma 4 as well as (60) and (61b). Substituting (65), (66), (67), and (68) into
(64), noting the cancellation of the terms (JΨ1)0j − (JΨ1)Nj and (JΨ2)i0 − (JΨ2)iN , and invoking
Lemma 5 to show that the source term in (44) does not contribute to the entropy balance, we
therefore obtain (63).

Remark 8. Unlike existing proofs of entropy stability in curvilinear coordinates (see, for example,
[14, Appendix B.1.1]), the proof of Theorem 2 does not rely on any discrete metric identities. This
allows us to use an analytical representation of the geometry and tangent basis vectors, which
ensures that (59) is satisfied.

The first line on the right-hand side of (63) represents a discrete integral of the numerical entropy
flux directed into the element, the second line contains interface production terms which are zero
for an entropy-conservative interface flux and non-positive for an entropy-stable interface flux, and
the third line contains volume production terms which are zero for an entropy-conservative volume
flux. Under such conditions, the resulting entropy balance becomes

d

dt
IE [η] ≤

N∑
j=0

ωj

[
(JF 1)∗0j,0j+ − (JF 1)∗Nj,Nj+

]
+

N∑
i=0

ωi

[
(JF 2)∗i0,i0+ − (JF 2)∗iN,iN+

]
, (69)

which holds as an equality when the volume and interface fluxes are both entropy conservative. A
semi-discrete bound on the integrated entropy analogous to (18) can therefore be derived under the
same assumptions invoked for global mass conservation in Section 4.2 through the cancellation of
numerical entropy flux contributions at element interfaces.

4.4. Well balancing

It is often desired for a numerical method to exactly preserve certain equilibrium states in order
to minimize the error in discretizations of problems corresponding to small perturbations of such
equilibria. For the shallow water equations, the “lake at rest” or “atmosphere at rest” state is an
important example of such an equilibrium, corresponding to a steady state given everywhere on S
by

H = constant, ~v = ~0, (70)

where H := h+ b denotes the total surface height, corresponding to a balance between the pressure
gradient and the bottom topography term. The following theorem establishes that the proposed
scheme preserves such an equilibrium.

Theorem 3. Assuming that the bottom topography b is continuous, the discretization in (37) with
the volume flux and source term introduced in Lemma 3 and the surface flux in (50) is well balanced
in the sense that any solution satisfying (70) results in duij/dt = 0.

Proof. Proceeding similarly to the proof of Lemma 3, we begin with the strong form in (39) and
again note that the interface terms vanish for continuous bottom topographies. Rewriting the
volume terms as in (45) and (46), we then set the contravariant velocity components v1 and v2 both
to zero and combine the contributions from h and b to obtain

d

dt
uij = −

N∑
m=0

 0
g(G11h)ijDimHmj

g(G21h)ijDimHmj

− N∑
m=0

 0
g(G12h)ijDjmHim

g(G22h)ijDjmHim

 . (71)

Finally, we can use (36) to show that both terms on the right-hand side of (71) vanish when the
surface height h+ b is constant.
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5. Numerical experiments

The numerical experiments presented in this section are performed using TrixiAtmo.jl,2 an
open-source package written in Julia [46] extending the Trixi.jl simulation framework [47] to
atmospheric flow problems. The scripts required to produce and post-process the results in this
paper are provided within the article’s reproducibility repository [48]. All initial conditions and
problem data are prescribed in SI units (kg-m-s), and, following [1], we make use of the following
values for the Earth’s radius, rotation rate, and gravitational acceleration:

a = 6.37122× 106 m, Ω = 7.292× 10−5 s−1, g = 9.80616 m s−2. (72)

Taking ~ez to be the Earth’s rotation axis, the Coriolis parameter is given by f = 2Ωy/a = 2Ω sin θ
for all cases considered here. The mesh is constructed as described in Section 3.1, with the corner
vertices placed according to a uniform subdivision of the cube mapped onto the sphere using an
equiangular gnomonic projection (see, for example, Ronchi et al. [49] as well as earlier work by
Sadourny [50]), and all metric terms are computed exactly. Similarly to [28], we consider the nominal
resolution for such cubed-sphere grids to be the average equatorial distance between quadrature
points, which can be computed as

Nominal resolution :=
π

2

a

MN
, (73)

where M denotes the number of elements per direction on each face of the cube and N denotes
the polynomial degree of the tensor-product spectral-element approximation. Time integration
is performed using the fourth-order, low-storage explicit Runge-Kutta method of Carpenter and
Kennedy [51] implemented in DifferentialEquations.jl [52]. We make use of an adaptive time
step based on the Courant–Friedrichs–Lewy (CFL) condition, as given by

∆t = C min
E⊂S

N
min
i,j=0

(
2

N + 1

1

|λ1
ij |+ |λ2

ij |

)
, (74)

where C > 0 is the Courant number, λ1
ij and λ2

ij correspond to the nodal values of the contravariant
wave speeds in (51), and we note that the quantity in parentheses in (74) is an approximation
of the ratio of the local mesh spacing to the maximum wave speed in physical space, which we
have adapted from Ranocha et al. [53, 54]. In order to ensure that the temporal discretization
error is negligible relative to the spatial discretization error and that the robustness of the fully
discrete algorithm is not impacted by the CFL condition for the explicit temporal discretization,
we take C = 0.1 for all numerical experiments in this section. The remainder of this section will
consider a sequence of four test cases, which will be used to assess the accuracy and robustness of
the proposed schemes as well as to support the theoretical analysis presented in Section 4. We will
present results for an entropy-conservative formulation (abbreviated in this section as “EC”) in
which both the volume and interface fluxes are computed using (43), as well as an entropy-stable
formulation (abbreviated as “ES”) in which the volume and interface fluxes are given by (43) and
(50), respectively.

2https://github.com/trixi-framework/TrixiAtmo.jl
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Figure 2: Convergence results for the unsteady solid-body rotation problem at t = 5 days

5.1. Unsteady solid-body rotation

The first case we consider is an unsteady analytical solution to the spherical shallow water
equations proposed in [3, Example 3]. To obtain such a solution, we introduce the rotating frame

~bx(t) := cos(Ωt)~ex + sin(Ωt)~ey, ~by(t) := − sin(Ωt)~ex + cos(Ωt)~ey, ~bz(t) := ~ez, (75)

as well as the vector-valued function ~ϕ(~x, t) := (~x ·~bx(t))~ex + (~x ·~by(t))~ey + (~x ·~bz(t))~ez. Defining

the Earth’s rotation vector as ~Ω := Ω~ez, prescribing the bottom topography as

b(~x) :=
1

2g

(
~Ω · ~x

)2
, (76)

and defining the fixed vector ~c := − sinα~ex + cosα~ey, it can be shown that the following surface
height and velocity fields solve the spherical shallow water equations:

H(~x, t) =
1

g

(
−(~Ω · ~x+ V ~ϕ(~c, t) · ~x/a)2

2
+

(~Ω · ~x)2

2
+K

)
, ~v(~x, t) = V ~ϕ(~c, t)× ~x

a
. (77)

In our numerical experiments, we take values of α = π/4, V = 2πa/(12 · 86400 s), and K =
133681 m2/s2 for consistency with the results in [3]. The numerical solution is initialized on each
element by evaluating the state vector u in terms of H(~x, 0), ~v(~x, 0), and b(~x) at each node position
~x = ~X(ξi, ξj) in physical space, where (28) is used to transform the velocity vector from global
Cartesian to local contravariant components.

Using Hexact to denote the analytical height field given in (77), we compute the L2 error in
such a quantity at t = 5 days following the conventions suggested in [1], wherein we employ the
quadrature formula in (32) and normalize to obtain

Normalized L2 height error :=
IS [(H −Hexact)

2]1/2

IS [(Hexact)2]1/2
. (78)

Holding the polynomial degree N fixed and successively doubling the number of elements per
dimension on each face of the cubed sphere, we observe that the ES scheme converges at an optimal
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rate of N + 1, while the EC scheme converges at a rate of N for odd polynomial degrees and N + 1
for even polynomial degrees, as shown for N = 3 and N = 4 in Figure 2a and Figure 2b, respectively.
Holding the number of elements fixed and varying the polynomial degree, we observe exponential
convergence in Figure 2c for both the EC and ES formulations. In all cases, the error values are
smaller for the ES scheme than for the EC scheme. Such results are consistent with the expected
convergence behaviour for discontinuous spectral-element discretizations in Euclidean space.

5.2. Flow over an isolated mountain

Our second test case involves an initially zonal flow over an isolated mountain. Following [1,
Case 5] we consider a mountain of height bref = 2000 m centred at a longitude of λ0 = −π/2 and a
latitude of θ0 = π/6, as given by

b(λ, θ) := bref

(
1−

√
min(R2, (λ− λ0)2 + (θ − θ0)2)/R

)
, (79)

where we take R = π/9. Representing the velocity field in terms of a spherical basis as ~v = u~i+ v~j,
where u and v denote the zonal and meridional velocity components and ~i and ~j denote the
longitudinal and latitudinal basis vectors, respectively, we prescribe the initial values of H, u, and v
as functions of longitude and latitude given by

H0(λ, θ) := href −
1

g

(
aΩV +

1

2
V 2

)
sin2 θ, u0(λ, θ) := V cos θ, v0(λ, θ) := 0 m/s, (80)

where we take href = 5960 m. In our numerical experiments, we consider both the case of V = 0 m/s,
for which a well-balanced discretization is expected to maintain the initial condition up to roundoff
error, as well as the case of V = 20 m/s described in [1]. For initial velocity fields specified in zonal
and meridional components as in (80), we first transform to a Cartesian representation asvxvy

vz

 =

− sinλ − cosλ sin θ
cosλ − sinλ sin θ

0 cos θ

(u
v

)
(81)

before using (28) to obtain the contravariant components. We do not apply any smoothing to
the sharp orography in (79); however, we note that the use of the collocation derivative operator
to compute the bottom topography gradient within a flux-differencing formulation effectively
approximates b through polynomial interpolation on each element prior to differentiation.

Using (N,M) = (3, 20), as was chosen in several previous studies, including [28, Section 4.3],
and beginning with the case of V = 0 m/s, we first note that the initial time derivative of the state
vector is on the order of machine precision at all nodes for both the EC and ES variants of the
scheme, consistent with Theorem 3. Plotting the temporal growth of the normalized L2 error over a
period of 15 days in Figure 3a, we observe a slow deviation from the initial balanced state due to
roundoff error accumulation; such error growth occurs more slowly for the ES variant than for the
EC variant due to the dissipative effect of the local Lax–Friedrichs numerical flux. In order to assess
the conservation properties of the schemes with respect to mass and total energy (i.e., mathematical
entropy), we consider the case of V = 20 m/s and evaluate the metrics

Normalized mass change :=
IS [h]− IS [h0]

IS [h0]
, Normalized entropy change :=

IS [η]− IS [η0]

IS [η0]
, (82)
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Figure 3: Error growth, mass conservation, and total energy (i.e., mathematical entropy) conservation or dissipation
for the isolated mountain problem with (N,M) = (3, 20)

(a) EC with (N,M) = (3, 20) (b) ES with (N,M) = (3, 20)

Figure 4: Relative vorticity contours (s−1) at t = 7 days for the isolated mountain problem with V = 20 m/s, where
topography contours at 500 m, 1000 m, and 1500 m are shown in black

where h0 and η0 are the layer depth and mathematical entropy fields evaluated at the initial solution
state. Plotting the evolution of such quantities in Figure 3b and Figure 3c, we see that IS [h] and
IS [η] remain constant up to roundoff error for the EC scheme, reflecting the fact that the spatial
discretization is conservative of mass and entropy as a consequence of Theorems 1 and 2, while
the small time step renders the effect of the temporal discretization on such properties negligible.
For the ES scheme, IS [h] remains constant up to roundoff error, but IS [η] decays monotonically,
reflecting discrete mass conservation and entropy stability. These results are consistent with the
theoretical analysis in Section 4.

In Figure 4, we plot the relative vorticity field, which is given by ζ := εij∇ivj = (∂2v1− ∂1v2)/J ,
at t = 7 days, considering the case of V = 20 m/s. The resulting contours are qualitatively similar
to those presented in [21, Fig. 9] and [28, Fig. 11]. While some oscillatory behaviour is observed in
the EC case, likely due to the absence of numerical dissipation, such oscillations are nevertheless
smaller than those observed in [28, Fig. 11b] for a standard flux-form DG method at the same

23



Time t (days)

0 3 6 9 12

N
or

m
a
li
ze

d
 L

2  
h
ei

g
h
t 

er
ro

r

0

5

10

× 10− 3

EC

ES

(a) Normalized L2 height error
with (N,M) = (3, 16)

Time t (days)

0 3 6 9 12

N
or

m
a
li
ze

d
 L

2  
h
ei

g
h
t 

er
ro

r

0

5

10

× 10− 3

EC

ES

(b) Normalized L2 height error
with (N,M) = (3, 32)

Time t (days)

0 3 6 9 12

N
or

m
a
li
ze

d
 L

2  
h
ei

g
h
t 

er
ro

r

0

5

10

× 10− 3

EC

ES

(c) Normalized L2 height error
with (N,M) = (3, 64)

Time t (days)

0 3 6 9 12

N
or

m
al

iz
ed

 e
n
tr

op
y
 c

h
an

ge

−4

−2

0
× 10− 8

EC

ES

(d) Normalized entropy change
with (N,M) = (3, 16)

Time t (days)

0 3 6 9 12

N
or

m
al

iz
ed

 e
n
tr

op
y
 c

h
an

ge

−4

−2

0
× 10− 8

EC

ES

(e) Normalized entropy change
with (N,M) = (3, 32)

Time t (days)

0 3 6 9 12
N

or
m

al
iz

ed
 e

n
tr

op
y
 c

h
an

ge

−4

−2

0
× 10− 8

EC

ES

(f) Normalized entropy change
with (N,M) = (3, 64)

Figure 5: Error growth and total energy (i.e., mathematical entropy) conservation or dissipation for the unperturbed
barotropic instability problem

polynomial degree and resolution, despite the fact that their method made use of a dissipative
interface flux. For our ES formulation using the interface flux in (50), which employs the same
dissipation term and wave speed estimate used in [28], such oscillations are not present, suggesting
that they may be the result of spurious numerical behaviour which is suppressed through the use
of a flux-differencing ES formulation rather than a standard DG scheme. Further comparisons to
results obtained using standard DG methods will be presented in Section 5.4.

5.3. Barotropic instability

The third case we consider is a barotropic instability initiated by a perturbation applied to a
mid-latitude jet, as proposed in [2]. The initial velocity field is prescribed as a purely zonal flow
given by

u0(λ, θ) :=


V exp((θ − θ0)−1(θ − θ1)−1)

exp(−4(θ1 − θ0)−2)
, θ0 < θ < θ1,

0, otherwise,

(83)
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and v0(λ, θ) = 0 m/s, where V = 80 m/s, θ0 = π/7, and θ1 = π/2− θ0. Taking href = 10158 m as
in [20] so as to achieve a global mean layer depth of approximately 10000 m as specified in [2], we
compute the unperturbed balanced height field as

hbal(λ, θ) := href −
a

g

∫ θ

−π/2
u0(λ, θ′)

(
2Ω sin(θ′) + u0(λ, θ′)

tan(θ′)

a

)
dθ′, (84)

where the integral is evaluated numerically using QuadGK.jl [55], employing an adaptive scheme
based on a composite 15-point Gauss–Konrod quadrature rule (which itself embeds a seven-point
Legendre–Gauss quadrature rule) with a relative tolerance of

√
ε, where ε ≈ 2.22× 10−16 denotes

machine epsilon in double-precision arithmetic. Adding a small perturbation to the depth field to
trigger the instability, we obtain

h0(λ, θ) =

{
hbal(λ, θ) + δh cos θ exp(−(λ/α)2) exp(−((θ2 − θ)/β)2), −π < λ < π,

hbal(λ, θ), otherwise,
(85)

where α = 1/3, β = 1/15, θ2 = π/4, and we consider the unperturbed case of δh = 0 m as well as
the perturbed case of δh = 120 m, as recommended in [2].

Considering a polynomial degree of N = 3 and successively refined grids with M = 16, M = 32,
and M = 64, corresponding to nominal resolutions of approximately 208 km, 104 km, and 52
km, respectively, we evolve the unperturbed solution forward in time and plot the evolution of
the normalized L2 error (based on the deviation from the balanced initial state) for the EC and
ES schemes over a period of 12 days in Figure 5. As the well balancing property established in
Theorem 3 applies only to the rest-state equilibrium in (70), the discretization is not expected to
preserve the initial condition for all time, and we indeed observe significant deviation in all cases
due to numerical perturbations which are introduced through discretization error, roundoff error, as
well as the representation of the initial condition within a finite-dimensional approximation space.
However, the onset of such rapid error growth is shifted later in time as the mesh is refined, and the
integrated total energy IS [η] is nevertheless conserved for the EC scheme and dissipated for the ES
scheme, in accordance with Theorem 2.

In Figure 6, we plot the relative vorticity field at t = 6 days for an unperturbed initial condition,
viewed as an orthographic projection of the northern hemisphere with the λ = 0 meridian pointed
downwards. For the lower-resolution simulations with M = 16 and M = 32, nonphysical flow features
(i.e., grid imprinting) associated with numerical perturbation growth can be seen, with significantly
more high-frequency noise observed for the EC scheme than for the ES scheme. At M = 64, the
initial condition is preserved quite well, suggesting that such a resolution would likely be sufficient
for qualitatively preserving the physical flow features arising from a perturbed initial condition.
Comparing the contours in Figure 7 resulting from the perturbed initial condition to reference
solutions such as those in [2], we see that this is indeed the case, with M = 64 being sufficient
to obtain vorticity fields which exhibit the qualitative features observed in the literature, without
interference by artificial flow features initiated by numerical perturbations absent in the analytical
definition of the initial condition. While the EC scheme exhibits some oscillatory behaviour of a
similar nature to that observed in the isolated mountain case due to the lack of any mechanism to
dissipate high-frequency noise, it is nevertheless remarkable that a dissipation-free numerical method
is able to remain stable for a relatively complex model problem for a geophysical flow exhibiting
multiscale behaviour and steep solution gradients.
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(a) EC with (N,M) = (3, 16) (b) EC with (N,M) = (3, 32) (c) EC with (N,M) = (3, 64)

(d) ES with (N,M) = (3, 16) (e) ES with (N,M) = (3, 32) (f) ES with (N,M) = (3, 64)

Figure 6: Relative vorticity contours (s−1) at t = 6 days for the unperturbed barotropic instability problem

5.4. Rossby–Haurwitz wave

As a fourth and final test case, we consider a Rossby–Haurwitz wave with wavenumber four,
as described in [1, Case 6]. Taking parameter values of ω = K = 7.848 × 10−6 s−1, R = 4, and
href = 8000 m, the functions

A(θ) :=
ω

2
(2Ω + ω) cos2 θ +

K2

4
cos2R θ

(
(R+ 1) cos2 θ + (2R2 −R− 2)− 2

R2

cos2 θ

)
, (86a)

B(θ) :=
2(Ω + ω)K

(R+ 1)(R+ 2)
cosR θ

(
(R2 + 2R+ 2)− (R+ 1)2 cos2 θ

)
, (86b)

C(θ) :=
1

4
K2 cos2R θ

(
(R+ 1) cos2 θ − (R+ 2)

)
, (86c)

are used to prescribe the initial depth and spherical velocity components as

h0(λ, θ) = href +
a2

g
(A(θ) +B(θ) cos(Rλ) + C(θ) cos(2Rλ)) , (87a)

u0(λ, θ) = aω cos θ + aK cosR−1 θ(R sin2 θ − cos2 θ) cos(Rλ), (87b)

v0(λ, θ) = −aKR cosR−1 θ sin θ sin(Rλ). (87c)
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(a) EC with (N,M) = (3, 16) (b) EC with (N,M) = (3, 32) (c) EC with (N,M) = (3, 64)

(d) ES with (N,M) = (3, 16) (e) ES with (N,M) = (3, 32) (f) ES with (N,M) = (3, 64)

Figure 7: Relative vorticity contours (s−1) at t = 6 days for the perturbed barotropic instability problem

While it is common to run such a test case until t = 7 days or t = 14 days, we run for 28 days
as a more severe stress test of the schemes’ robustness for predictions over longer time horizons.
Furthermore, as a baseline for such robustness comparisons, we also report results for standard DG
methods using the same cubed-sphere grids, tensor-product polynomial approximation spaces, and
collocated LGL quadrature rules as our novel EC and ES formulations, discretizing (11) using the
standard weak formulation in (41) without any skew-symmetric splitting or flux-differencing, with a
local Lax–Friedrichs interface flux employing the same dissipative term appearing in (50).

Considering the cases of (N,M) = (3, 16) as well as that of (N,M) = (6, 8), which differ in
polynomial degree but correspond to the same nominal resolution of approximately 208 km, we plot
the entropy conservation error for the EC, ES, and standard DG schemes in Figures 8a and 8b, with
vertical lines indicating crash times. When applied to the spherical shallow water equations, the
standard DG scheme is conservative of mass, but does not satisfy any discrete entropy conservation or
stability properties. We accordingly observe uncontrolled growth in the total energy for the standard
DG schemes, with crashes occurring at t = 18.71 days and t = 13.39 days for the (N,M) = (3, 16)
and (N,M) = (6, 8) simulations respectively. For both polynomial degrees considered, the EC
method is able to run for longer than the corresponding standard DG scheme, but nevertheless
eventually crashes due to its inability to damp oscillations, which eventually leads to negative values
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Figure 8: Robustness of EC, ES, and standard collocated DG schemes for the Rossby–Haurwitz wave

for the layer depth. As with the standard DG method, the N = 3 EC scheme runs for longer than
the N = 6 EC scheme at an equal nominal resolution, with crashes occurring at t = 26.03 days and
t = 18.01 days. Unlike the standard and EC formulations, the ES schemes were capable of running
the full 28-day simulations to completion for both (N,M) = (3, 16) and (N,M) = (6, 8), indicating
that the local Lax–Friedrichs interface dissipation term in (50) provided sufficient damping of the
oscillations that led to negative depth values when the EC scheme was applied to this problem.
Examining the evolution of the discrete integral of the potential enstrophy Z := (ζ + f)2/h, we see
in Figures 8c and 8d that the aforementioned oscillatory behaviour manifests for the standard DG
and EC schemes in the form of a gradual buildup of grid-scale vorticity, beginning well before the
simulations crashed. While the ES scheme does not guarantee strict conservation or dissipation of
potential enstrophy or other vorticity-derived invariants, the integrated potential enstrophy deviated
by no more than approximately 0.1% over the course of each of the 28-day simulations, with such
deviations being almost entirely dissipative in nature. These results indicate that the interface
dissipation term was sufficient in this case to suppress spurious potential enstrophy production.
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6. Conclusions

A new discontinuous spectral-element formulation was devised for the rotating shallow water
equations with variable bottom topography expressed in covariant form on general unstructured
quadrilateral tessellations of curved two-dimensional manifolds. The approach relies on the use of
tensor-product summation-by-parts operators within a flux-differencing formulation in reference
coordinates derived from a skew-symmetric splitting of the divergence of the momentum flux tensor
in covariant form. The resulting methods are shown to be conservative of mass, and, depending on
the choice of numerical interface flux, conservative or dissipative of total energy, which serves as a
mathematical entropy function for the shallow water system.

The proposed schemes were applied to a series of standard model problems for idealized
atmospheric dynamics based on the shallow water equations on the sphere, including an unsteady
solid-body rotation, a zonal flow over an isolated mountain, a barotropic instability, and a Rossby–
Haurwitz wave. Using an entropy-conservative numerical flux at element interfaces, the resulting
schemes conserve mass as well as total energy, serving as a robust yet dissipation-free baseline to
which numerical dissipation can be added judiciously, for example, to reduce oscillations. When such
dissipation is introduced through an entropy-stable interface flux, the resulting schemes guarantee
conservation of mass and dissipation of total energy, attain optimal convergence (i.e., order N + 1
for a tensor-product approximation of polynomial degree N), and exhibit excellent robustness
even under challenging conditions including those involving under-resolved vortical structures and
integration over long time horizons.

The advances in this paper represent a first step in the process of developing a new atmospheric
dynamical core for numerical weather prediction and climate modelling. Future work will involve
the extension of the proposed approach to the three-dimensional nonhydrostatic compressible Euler
equations using an appropriate vertical discretization and a horizontally-implicit vertically-explicit
temporal discretization [19], as well as the extension to triangular and prismatic elements through
the use of multidimensional SBP formulations (as introduced by Hicken et al. [56] and reviewed
within an entropy-stable setting by Chen and Shu [57]) as well as entropy-stable tensor-product
formulations in collapsed coordinates, which were introduced by Montoya and Zingg [58] and
extended to prismatic elements by Keim et al. [59]. We would also like to investigate techniques
for preserving vorticity-based invariants such as potential enstrophy within the present framework.
Additionally, we hope to extend the proposed methodology beyond the context of geophysical fluid
dynamics, for example, to covariant formulations of hyperbolic partial differential equations arising
in general relativity and relativistic hydrodynamics, as well as to the treatment of curved elements
in computational fluid dynamics for engineering applications.
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[3] M. Läuter, D. Handorf, K. Dethloff, Unsteady analytical solutions of the spherical shallow
water equations, Journal of Computational Physics 210 (2) (2005) 535–553. doi:10.1016/j.
jcp.2005.04.022.

[4] M. Taylor, J. Tribbia, M. Iskandarani, The spectral element method for the shallow water
equations on the sphere, Journal of Computational Physics 130 (1) (1997) 92–108. doi:

10.1006/jcph.1996.5554.

[5] F. X. Giraldo, J. S. Hesthaven, T. Warburton, Nodal high-order discontinuous Galerkin methods
for the spherical shallow water equations, Journal of Computational Physics 181 (2) (2002)
499–525. doi:10.1006/jcph.2002.7139.

[6] S. Marras, J. F. Kelly, M. Moragues, A. Müller, M. A. Kopera, M. Vázquez, F. X. Giraldo,
G. Houzeaux, O. Jorba, A review of element-based Galerkin methods for numerical weather
prediction: Finite elements, spectral elements, and discontinuous Galerkin, Archives of Compu-
tational Methods in Engineering 23 (4) (2016) 673–722. doi:10.1007/s11831-015-9152-1.

[7] R. M. Kirby, G. E. Karniadakis, De-aliasing on non-uniform grids: Algorithms and applications,
Journal of Computational Physics 191 (1) (2003) 249–264. doi:10.1016/s0021-9991(03)

00314-0.

[8] G. Mengaldo, D. De Grazia, D. Moxey, P. E. Vincent, S. J. Sherwin, Dealiasing techniques for
high-order spectral element methods on regular and irregular grids, Journal of Computational
Physics 299 (2015) 56–81. doi:10.1016/j.jcp.2015.06.032.

[9] G. J. Gassner, A. R. Winters, D. A. Kopriva, Split form nodal discontinuous Galerkin schemes
with summation-by-parts property for the compressible Euler equations, Journal of Computa-
tional Physics 327 (2016) 39–66. doi:10.1016/j.jcp.2016.09.013.

[10] A. R. Winters, R. C. Moura, G. Mengaldo, G. J. Gassner, S. Walch, J. Peiro, S. J. Sherwin, A
comparative study on polynomial dealiasing and split form discontinuous Galerkin schemes for
under-resolved turbulence computations, Journal of Computational Physics 372 (2018) 1–21.
doi:10.1016/j.jcp.2018.06.016.

[11] H.-O. Kreiss, G. Scherer, Finite element and finite difference methods for hyperbolic partial dif-
ferential equations, in: C. de Boor (Ed.), Mathematical Aspects of Finite Elements in Partial Dif-
ferential Equations, Academic Press, 1974, pp. 195–212. doi:10.1016/b978-0-12-208350-1.
50012-1.

30

https://doi.org/10.1016/s0021-9991(05)80016-6
https://doi.org/10.1111/j.1600-0870.2004.00071.x
https://doi.org/10.1111/j.1600-0870.2004.00071.x
https://doi.org/10.1016/j.jcp.2005.04.022
https://doi.org/10.1016/j.jcp.2005.04.022
https://doi.org/10.1006/jcph.1996.5554
https://doi.org/10.1006/jcph.1996.5554
https://doi.org/10.1006/jcph.2002.7139
https://doi.org/10.1007/s11831-015-9152-1
https://doi.org/10.1016/s0021-9991(03)00314-0
https://doi.org/10.1016/s0021-9991(03)00314-0
https://doi.org/10.1016/j.jcp.2015.06.032
https://doi.org/10.1016/j.jcp.2016.09.013
https://doi.org/10.1016/j.jcp.2018.06.016
https://doi.org/10.1016/b978-0-12-208350-1.50012-1
https://doi.org/10.1016/b978-0-12-208350-1.50012-1


[12] E. Tadmor, The numerical viscosity of entropy stable schemes for systems of conservation laws.
I, Mathematics of Computation 49 (179) (1987) 91–103. doi:10.2307/2008251.

[13] P. G. LeFloch, J.-M. Mercier, C. Rohde, Fully discrete, entropy conservative schemes of
arbitrary order, SIAM Journal on Numerical Analysis 40 (5) (2002) 1968–1992. doi:10.1137/
s003614290240069x.

[14] T. C. Fisher, High-order L2 stable multi-domain finite difference method for compressible flows,
Ph.D. thesis, Purdue University (2012).

[15] G. J. Gassner, A skew-symmetric discontinuous Galerkin spectral element discretization and its
relation to SBP-SAT finite difference methods, SIAM Journal on Scientific Computing 35 (3)
(2013) A1233–A1253. doi:10.1137/120890144.

[16] G. J. Gassner, A. R. Winters, A novel robust strategy for discontinuous Galerkin methods in
computational fluid mechanics: Why? when? what? where?, Frontiers in Physics 8 (2021).
doi:10.3389/fphy.2020.500690.

[17] K. Ricardo, D. Lee, K. Duru, Conservation and stability in a discontinuous Galerkin method
for the vector invariant spherical shallow water equations, Journal of Computational Physics
500 (2024) 112763. doi:10.1016/j.jcp.2024.112763.

[18] M. Waruszewski, J. E. Kozdon, L. C. Wilcox, T. H. Gibson, F. X. Giraldo, Entropy stable
discontinuous Galerkin methods for balance laws in non-conservative form: Applications
to the Euler equations with gravity, Journal of Computational Physics 468 (2022) 111507.
doi:10.1016/j.jcp.2022.111507.

[19] M. Baldauf, A horizontally explicit, vertically implicit (HEVI) discontinuous Galerkin scheme
for the 2-dimensional Euler and Navier–Stokes equations using terrain-following coordinates,
Journal of Computational Physics 446 (2021) 110635. doi:10.1016/j.jcp.2021.110635.

[20] M. Baldauf, Discontinuous Galerkin solver for the shallow-water equations in covariant form
on the sphere and the ellipsoid, Journal of Computational Physics 410 (2020). doi:10.1016/j.
jcp.2020.109384.

[21] S. Gaudreault, M. Charron, V. Dallerit, M. Tokman, High-order numerical solutions to the
shallow-water equations on the rotated cubed-sphere grid, Journal of Computational Physics
449 (2022) 110792. doi:10.1016/j.jcp.2021.110792.

[22] Y. Kawai, H. Tomita, Development of a high-order global dynamical core using the discontinuous
Galerkin method for an atmospheric large-eddy simulation (LES) and proposal of test cases:
SCALE-DG v0.8.0, Geoscientific Model Development 18 (3) (2025) 725–762. doi:10.5194/

gmd-18-725-2025.

[23] G. J. Gassner, A. R. Winters, D. A. Kopriva, A well balanced and entropy conservative
discontinuous Galerkin spectral element method for the shallow water equations, Applied
Mathematics and Computation 272 (2016) 291–308. doi:10.1016/j.amc.2015.07.014.

31

https://doi.org/10.2307/2008251
https://doi.org/10.1137/s003614290240069x
https://doi.org/10.1137/s003614290240069x
https://doi.org/10.1137/120890144
https://doi.org/10.3389/fphy.2020.500690
https://doi.org/10.1016/j.jcp.2024.112763
https://doi.org/10.1016/j.jcp.2022.111507
https://doi.org/10.1016/j.jcp.2021.110635
https://doi.org/10.1016/j.jcp.2020.109384
https://doi.org/10.1016/j.jcp.2020.109384
https://doi.org/10.1016/j.jcp.2021.110792
https://doi.org/10.5194/gmd-18-725-2025
https://doi.org/10.5194/gmd-18-725-2025
https://doi.org/10.1016/j.amc.2015.07.014


[24] N. Wintermeyer, A. R. Winters, G. J. Gassner, D. A. Kopriva, An entropy stable nodal
discontinuous Galerkin method for the two-dimensional shallow water equations on unstructured
curvilinear meshes with discontinuous bathymetry, Journal of Computational Physics 340 (2017)
200–242. doi:10.1016/j.jcp.2017.03.036.

[25] R. Aris, Vectors, Tensors, and the Basic Equations of Fluid Mechanics, Dover Publications,
1962.

[26] C. W. Misner, K. S. Thorne, J. A. Wheeler, Gravitation, W. H. Freeman and Company, 1973.
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