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Abstract

We present a new class of efficient and robust discontinuous spectral-element methods of arbitrary
order for nonlinear hyperbolic systems of conservation laws on curved triangular and tetrahedral
unstructured grids. Such discretizations employ a recently introduced family of sparse tensor-product
summation-by-parts (SBP) operators in collapsed coordinates within an entropy-conservative modal
formulation, which is rendered entropy stable when a dissipative numerical flux is used at element
interfaces. The proposed algorithms exploit the structure of such SBP operators alongside that
of the Proriol-Koornwinder-Dubiner polynomial basis used to represent the numerical solution on
the reference triangle or tetrahedron, and a weight-adjusted approximation is employed in order to
efficiently invert the local mass matrix for curvilinear elements. Using such techniques, we obtain
an improvement in time complexity from O(p2d) to O(pd+1) relative to existing entropy-stable
formulations using multidimensional SBP operators not possessing such a tensor-product structure,
where p is the polynomial degree of the approximation and d is the number of spatial dimensions.
The number of required entropy-conservative two-point flux evaluations between pairs of quadrature
nodes is accordingly reduced by a factor ranging from 1.56 at p = 2 to 4.57 at p = 10 for triangles,
and from 1.88 at p = 2 to 10.99 at p = 10 for tetrahedra. Through numerical experiments involving
smooth solutions to the compressible Euler equations on isoparametric triangular and tetrahedral
grids, the proposed methods using tensor-product SBP operators are shown to exhibit similar levels
of accuracy for a given mesh and polynomial degree to those using multidimensional operators
based on symmetric quadrature rules, with both approaches achieving order p+ 1 convergence with
respect to the element size in the presence of interface dissipation as well as exponential convergence
with respect to the polynomial degree. Furthermore, both operator families are shown to give rise
to entropy-stable schemes which exhibit excellent robustness for test problems characteristic of
under-resolved turbulence simulations. Such results suggest that the algorithmic advantages resulting
from the use of tensor-product operators are obtained without compromising accuracy or robustness,
enabling the efficient extension of the benefits of entropy stability to higher polynomial degrees than
previously considered for triangular and tetrahedral elements.

Keywords: Entropy stability, summation-by-parts, discontinuous Galerkin, conservation laws
2020 MSC: 65M12, 65M60, 65M70

1. Introduction

Hyperbolic or advection-dominated nonlinear systems of conservation laws constitute a class
of partial differential equations (PDEs) of considerable importance in numerous scientific and
engineering disciplines, with applications ranging from aircraft design to climate modeling. As
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a result of their complex multiscale behaviour and propensity to develop discontinuities, such
PDEs present a significant challenge in the design of efficient, automated, and robust numerical
methods. High-order discontinuous spectral-element methods (DSEMs)1 have emerged as an attractive
approach for this class of problem, having received considerable attention in recent years due to their
performance on modern hardware (see, for example, Klöckner et al. [1], Abdi et al. [2], and Vermiere
et al. [3]) resulting from their relatively high arithmetic intensity (i.e. the ratio of floating-point
operations to memory accesses) and data locality. Moreover, such schemes are highly flexible in their
support for local variation in element size as well as polynomial degree, facilitating the adaptive
solution of complex problems in an efficient and automated manner, as exemplified in recent papers
by Parsani et al. [4] and Mossier et al. [5].

High-order methods such as DSEMs notoriously lack robustness when applied to strongly nonlinear
problems, particularly in the presence of under-resolved scales or discontinuous solutions. While such
issues are traditionally addressed through ad hoc stabilization techniques such as over-integration,
modal filtering, slope limiting, or numerical dissipation, modern entropy-stable formulations enable
rigorous proofs of stability (under certain physical admissibility criteria) by guaranteeing that a
strictly convex function of the numerical solution remains bounded for all time. For example, in
the context of fluid dynamics, an entropy-stable discretization can be constructed so as to satisfy
the Second Law of Thermodynamics in a discrete sense, a property which bounds the growth of
the numerical solution, provided that the pressure and density remain positive. Entropy-stable
schemes were introduced for nonlinear hyperbolic systems of conservation laws by Tadmor [6], who
devised first-order and second-order methods using specially designed two-point fluxes which conserve
a particular mathematical entropy function. LeFloch et al. [7] extended Tadmor’s approach to
high-order accuracy on periodic domains in one dimension. The modern era of high-order entropy-
stable discretizations, however, began when Fisher [8] combined entropy-conservative two-point flux
functions with summation-by-parts (SBP) operators, which are discrete differential operators mimetic
of integration by parts on bounded domains (see, for example, the review papers by Svärd and
Nordström [9] and Del Rey Fernández et al. [10]). Fisher’s approach (see also Fisher and Carpenter
[11] and Fisher et al. [12]) enabled the construction of entropy-stable high-order finite-difference
methods for the compressible Euler and Navier-Stokes equations on curvilinear block-structured
grids using affordable entropy-conservative two-point flux functions proposed by Ismail and Roe [13].
Such a combination of SBP operators with two-point flux functions came to be known in the entropy
stability community as flux differencing (not to be confused with the similarly named flux-difference
splitting technique introduced by Roe [14] decades earlier for approximate Riemann solvers).

The extension of entropy stability to DSEM formulations was made possible through the work of
Gassner [15], who recognized that the matrix operators employed within discontinuous Galerkin
(DG) methods based on collocated Legendre-Gauss-Lobatto quadrature were, in fact, SBP operators,
an equivalence which he exploited in the construction of provably stable discretizations of Burgers’
equation using split forms first proposed in the finite-difference community. Entropy-stable DSEMs
for systems of conservation laws on tensor-product quadrilateral and hexahedral elements were then
introduced by Carpenter et al. [16] and Gassner et al. [17], with the latter demonstrating that a broad
class of split-form and entropy-stable DSEMs could be recovered by choosing different two-point
flux functions. These schemes are distinguished from the approach taken by Barth [18] as well as
Hiltebrand and Mishra [19] based on the work of Hughes et al. [20], wherein space-time DG schemes
are formulated in terms of the entropy variables. Unlike flux-differencing approaches, the latter
methodology results in discretizations which are only entropy stable under the assumption that all
integrals in the corresponding variational formulation are evaluated exactly (which is impractical, if
not impossible, for many PDEs of interest to practitioners, including the compressible Euler and

1In this work, we use the term spectral-element method (SEM) to refer to any numerical method achieving
high-order accuracy through the use of multiple degrees of freedom within a given element. Note that we do not
necessarily require a collocated tensor-product formulation, as is sometimes implied by the use of such terminology.
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Navier-Stokes equations) and, furthermore, cannot be formulated explicitly in time.
Entropy-stable DSEMs were generalized beyond tensor-product quadrature rules on quadrilaterals

and hexahedra through the use of multidimensional SBP operators, which were introduced by Hicken
et al. [21] as an extension of the generalized SBP framework proposed in a one-dimensional setting
by Del Rey Fernández et al. [22]. The subsequent development of entropy-stable high-order methods
on triangles and tetrahedra (which first appeared in papers by Chen and Shu [23], Crean et al. [24],
and Chan [25]) is outlined in a review paper by Chen and Shu [26]. While advantageous in terms of
geometric flexibility, such triangular and tetrahedral SBP operators do not possess a tensor-product
structure, and, as such, result in schemes which become considerably more costly than comparable
tensor-product DSEMs on quadrilaterals and hexahedra as the polynomial degree is increased.
Such a difference is due in part to the fact that tensor-product spectral-element operators are
amenable to sum-factorization techniques, which were proposed in the context of spectral methods
by Orszag [27]. Sum factorization, which involves the application of tensor-product operators in
a dimension-by-dimension manner, results in the number of floating-point operations required to
evaluate spatial operators scaling asymptotically as O(pd+1) with the polynomial degree p, where
d denotes the number of spatial dimensions. This compares favourably to the O(p2d) complexity
obtained using multidimensional operators without a tensor-product structure. In the context of
an entropy-stable scheme, multidimensional SBP operators are further disadvantaged due to the
fact that they require the evaluation of entropy-conservative two-point flux functions (which, in
the case of the Euler and Navier-Stokes equations, are relatively expensive operations involving the
logarithmic mean) between all pairs of quadrature nodes, rather than simply along lines of nodes
as in a tensor-product formulation. Due in part to these limitations, as well as the difficulty in
constructing suitable quadrature rules, entropy-stable discretizations based on multidimensional (i.e.
non-tensor-product) SBP operators rarely employ polynomial degrees greater than four or five.

In a recent paper [28], the present authors introduced tensor-product SBP operators on triangles
and tetrahedra based on collapsed coordinate systems, which were used within skew-symmetric nodal
and modal DSEM formulations to obtain energy-stable discretizations of the linear advection equation
on curved elements. These contributions served to extend the SBP framework to tensor-product
operators in collapsed coordinates, which had previously been recognized in the SEM community (see,
for example, Sherwin and Karniadakis [29, 30], Lomtev and Karniadakis [31], Kirby et al. [32], and
Moxey et al. [33]) to be crucial for obtaining efficient discretizations on triangles and tetrahedra (as
well as prisms and pyramids) at high polynomial degreees. Specifically, it was shown in [28] that by
exploiting the tensor-product structure of the proposed SBP operators, and, in the case of the modal
approach, making use of the “warped” tensor-product structure of the Proriol-Koornwinder-Dubiner
(PKD) orthogonal polynomial basis [34–36] alongside a weight-adjusted approximation proposed by
Chan et al. [37] to invert the curvilinear mass matrix, the time derivative could be obtained in O(pd+1)
floating-point operations (i.e. the same asymptotic complexity as for the DSEMs on quadrilaterals
and hexahedra described above) through sum factorization. Moreover, the modal formulations
were shown to be similar in accuracy and in spectral radius (which, for linear problems, dictates
the maximum stable time step for explicit temporal integration) to those using multidimensional
operators on triangles and tetrahedra, while requiring far fewer floating-point operations at higher
polynomial degrees.

Building upon the above contributions, the primary objective of this paper is to apply the
tensor-product SBP operators on triangles and tetrahedra introduced in [28] to the construction of
efficient entropy-stable DSEMs of arbitrary order for nonlinear hyperbolic systems of conservation
laws. The proposed methods make use of a modal PKD basis and a weight-adjusted approximation
of the mass matrix inverse within an entropy-stable flux-differencing formulation, in which we exploit
operator sparsity as well as sum factorization in order to obtain O(pd+1) complexity for all local
elemental operations. In the tetrahedral case, we also approximate the metric terms arising from the
mapping from reference to physical coordinates using a curl formulation from Chan and Wilcox [38]
to satisfy the discrete metric identities, which must hold in order to ensure free-stream preservation
and entropy stability on curvilinear meshes. These contributions enable the efficient extension of
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entropy-stable schemes on triangles and tetrahedra to polynomial degrees beyond those typically
considered for such element types.

We now outline the structure of the remainder of this paper. In Section 2, we introduce
some relevant notation and review some fundamental concepts relating to hyperbolic systems of
conservation laws and SBP operators as well as classical orthogonal polynomials and Gaussian
quadrature rules. In Section 3, we review the relevant aspects of the approach introduced in
[28] for the construction of tensor-product SBP operators on triangles and tetrahedra. Section 4
describes a general framework for the construction of entropy-stable DSEMs using tensor-product
or multidimensional SBP operators on curved triangular or tetrahedral elements, while Section 5
describes algorithmic considerations for the efficient implementation of the proposed schemes. The
methods are then analyzed with respect to their conservation, free-stream preservation, and entropy
stability properties in Section 6. Numerical studies of accuracy as well as robustness for the
compressible Euler equations are presented in Section 7, and conclusions are provided in Section 8.

2. Preliminaries

2.1. Notation
The notation in this paper follows that introduced by the authors in [39], [40], and [28]. Single

underlines are used to denote vectors (treated as column matrices), whereas double underlines denote
matrices. Symbols in bold are used specifically to denote Cartesian (i.e. spatial) vectors, for which
we employ the usual dot product x · y := x1y1 + · · ·+ xdyd and Euclidean norm ‖x‖2 := x · x. The
symbol ∇ is used to denote componentwise differentiation with respect to either type of vector, for
example, as ∇x := [∂/∂x1 , . . . , ∂/∂xd ]T or ∇U := [∂/∂U1 , . . . , ∂/∂Ud ]T. The symbols R, R+, R+

0 , N,
N0, and Sd−1 denote the real numbers, the positive real numbers, the non-negative real numbers, the
natural numbers (excluding zero), the natural numbers including zero, and the unit (d− 1)-sphere
Sd−1 := {x ∈ Rd : ‖x‖ = 1}, respectively. The symbols 0(N) and 1(N) are reserved for vectors of
length N ∈ N containing all zeros and all ones, respectively, where the superscript is omitted when
clear from the context, and the symbol 0(M×N) likewise denotes an M by N matrix of zeros. The
notation {1 : N} is used as shorthand for the index set {1, 2, . . . , N}. Given an arbitrary bounded
domain D ⊂ Rd, we use ∂D to denote its boundary and D̄ := D ∪ ∂D to denote its closure; the
interior of a closed domain D is then given by D̊ := D \ ∂D. The space of polynomials of maximum
total degree p ∈ N0 on D is then defined as Pp(D) := span{D 3 x 7→ xα1

1 · · ·x
αd
d : α ∈ N (p)} in

terms of the multi-index set N (p) := {α ∈ Nd0 : α1 + · · ·+αd ≤ p} of cardinality N∗p :=
(
p+d
d

)
. Other

relevant notational conventions and definitions are introduced as they appear.

2.2. Systems of conservation laws and the entropy inequality
We are interested in systems of conservation laws governing the evolution of Nc ∈ N variables

U(x, t) ∈ Υ ⊂ RNc on the domain Ω ⊂ Rd over the time interval (0, T ) ⊂ R+
0 , taking the form

∂U(x, t)
∂t

+
d∑

m=1

∂Fm(U(x, t))
∂xm

= 0, ∀ (x, t) ∈ Ω× (0, T ), (1a)

U(x, 0) = U0(x), ∀x ∈ Ω, (1b)

subject to appropriate boundary conditions, where Fm(U(x, t)) ∈ RNc is the mth Cartesian flux
component and U0(x) ∈ Υ represents the initial data, where Υ denotes the set of admissible solution
states. For convenience, we define the flux in any direction n ∈ Sd−1 for an arbitrary state U ∈ Υ as

F (U,n) :=
d∑

m=1
nmFm(U). (2)

A system of conservation laws in the form of (1) is then called hyperbolic if the flux Jacobian
∇UF (U,n) ∈ RNc×Nc is diagonalizable with all real eigenvalues for all U ∈ Υ and n ∈ Sd−1.
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Remark 1. In this work, we tacitly assume that numerical solutions remain within the admissible set
Υ, corresponding, for example, to the requirement for thermodynamic quantities such as pressure or
density to be positive. This is difficult to ensure a priori for nonlinear problems, and often requires
the use of bespoke limiting procedures, which are described in the context of entropy-stable schemes,
for example, in recent papers by Rueda-Ramı́rez et al. [41] and Lin et al. [42].

We are specifically interested in hyperbolic systems of conservation laws endowed with an entropy
function and corresponding entropy flux, which are defined as follows.
Definition 1. The functions S : Υ→ R and F : Υ→ Rd are, respectively, an entropy function and
entropy flux if S is strictly convex (i.e. its Hessian is positive definite), and the relation(

∇UFm(U)
)T =

(
∇US(U)

)T(∇UFm(U)
)
, ∀U ∈ Υ, (3)

holds for all m ∈ {1 : d}, where ∇US(U),∇UFm(U) ∈ RNc are the gradients of the entropy and
entropy flux components with respect to the conservative variables, respectively, and ∇UFm(U) ∈
RNc×Nc denotes the Jacobian of the mth flux component with respect to the conservative variables.

The entries of the vector W(U) := ∇US(U) are referred to as the entropy variables, where the
mapping W has an inverse given by U due to the strict convexity of S over the admissible set Υ. As
described by Friedrichs and Lax [43], the existence of an entropy-entropy flux pair in the sense of
Definition 1 implies that any classical (i.e. continuously differentiable) solution to (1) satisfies an
additional conservation equation of the form

∂S(U(x, t))
∂t

+∇x ·F(U(x, t)) = 0, ∀ (x, t) ∈ Ω× (0, T ). (4)

Integrating (4) over the spatial domain and using the divergence theorem then results in
d
dt

∫
Ω
S(U(x, t)) dx = −

∫
∂Ω

F(U(x, t)) · n(x) ds

=
∫
∂Ω

(
Ψ
(
W(U(x, t))

)
· n(x)−

(
W(U(x, t))

)T
F (U(x, t),n(x))

)
ds,

(5)

where n(x) ∈ Sd−1 denotes the outward unit normal to ∂Ω, and we have defined the flux potential
Ψ (W ) ∈ Rd such that Ψm(W ) := WTFm(U(W ))−Fm(U(W )). We are, however, often interested in
weak solutions, which satisfy (1) in the sense of distributions and can therefore be discontinuous,
describing phenomena such as shock waves. Replacing (5) with an entropy inequality of the form

d
dt

∫
Ω
S(U(x, t)) dx ≤

∫
∂Ω

(
Ψ
(
W(U(x, t))

)
· n(x)−

(
W(U(x, t))

)T
F (U(x, t),n(x))

)
ds (6)

then provides an admissibility criterion for physically relevant weak solutions (see, for example,
Kružkov [44] or Lax [45]). Provided that U(x, t) remains within Υ and that the boundary conditions
are imposed correctly, it can be shown (see, for example, Dafermos [46]) that (6) implies a bound on
the solution itself due to the strict convexity of the entropy function. We are therefore interested in
constructing discretizations which respect a semi-discrete form of such an entropy bound.
Remark 2. The requirement for a strictly convex entropy function in Definition 1 is consistent with
the mathematical literature, but is opposite the convention used in physics. As such, the inequality
in (6) is a generalized statement of the Second Law of Thermodynamics, up to a change in sign.

2.3. Summation-by-parts operators
The discretizations described in this paper involve the construction of SBP operators on a

canonical reference element, which are then used to discretize the PDE on an unstructured mesh
through the use of a bijective mapping from the reference element to each physical element. We now
require the following definition of a nodal SBP operator from [21], which extends the generalized
definition proposed in [22] to the multidimensional setting.
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Definition 2. Let Ω̂ ⊂ Rd denote a closed, bounded, and connected reference domain on which we
define a set of Nq ∈ N distinct nodes {ξ(i)}i∈{1:Nq} ⊂ Ω̂, and let the vectors

u :=
[
U(ξ(1)), . . . , U(ξ(Nq))

]T and v :=
[
V (ξ(1)), . . . , V (ξ(Nq))

]T (7)

contain the nodal values of arbitrary functions U, V : Ω̂ → R. A matrix D(m) ∈ RNq×Nq ap-
proximating the partial derivative ∂/∂ξm is then a nodal SBP operator of degree q ∈ N0 if it
satisfies

D(m)v =
[
(∂V/∂ξm)(ξ(1)), . . . , (∂V/∂ξm)(ξ(Nq))

]T
, ∀V ∈ Pp(Ω̂), (8)

and may be decomposed as D(m) = W−1Q(m) such that W ∈ RNq×Nq is symmetric positive-definite
(SPD) and Q(m) ∈ RNq×Nq satisfies the SBP property given by Q(m) + (Q(m))T = E(m), where

uTE(m)v =
∫
∂Ω̂
U(ξ)V (ξ)n̂m(ξ) dŝ, ∀U, V ∈ Pr(Ω̂), (9)

holds for some r ≥ q, and n̂ : ∂Ω̂→ Sd−1 denotes the outward unit normal vector to Ω̂.

The SBP property is equivalent to the decomposition Q(m) = S(m) + 1
2E

(m), where S(m) is
skew-symmetric and E(m) is a symmetric matrix satisfying the conditions in (9). Moreover, SBP
operators mimic integration by parts in a discrete sense, as given by∫

Ω̂
U(ξ)∂V (ξ)

∂ξm
dξ

≈

+
∫

Ω̂

∂U(ξ)
∂ξm

V (ξ) dξ

≈

=
∫
∂Ω̂
U(ξ)V (ξ)n̂m(ξ) dŝ

≈

.

uTQ(m)v + uT(Q(m))Tv = uTE(m)v

(10)

We refer to any SBP operator for which the associated SPD matrix W is diagonal as a diagonal-norm
SBP operator. In such a case, it was shown in [21, Theorem 3.2] that the diagonal entries of W
constitute the weights {ω(i)}i∈{1:Nq} ⊂ R+ for a quadrature rule satisfying

Nq∑
i=1

V (ξ(i))ω(i) =
∫

Ω̂
V (ξ) dξ, ∀V ∈ Pτ (Ω̂), (11)

which is of degree τ ≥ 2q − 1 for any diagonal-norm SBP operator of degree q.
Remark 3. The polynomial exactness condition in (8) implies that any SBP operator of degree q is,
by definition, also an SBP operator of any positive integer less than q. Where such ambiguity arises,
the degree q of an SBP operator is taken to refer uniquely to the maximum integer value for which
(8) holds, and we adopt an analogous convention for quadrature rules such as that in (11).
Remark 4. Although a multidimensional discretization requires an SBP operator of the form
D(m) = W−1Q(m) to be constructed for each partial derivative ∂/∂xm, it will be assumed throughout
this work, as is typical in the SBP literature, that W is the same for all coordinate indices m ∈ {1 : d}.

2.4. Decomposition of the boundary operators
Let us now assume that the reference element Ω̂ ⊂ Rd is a polytope, corresponding to a polygon

in two dimensions or a polyhedron in three dimensions, and partition its boundary into Nf ∈ N
closed subsets {Γ̂(ζ)}ζ∈{1:Nf} with disjoint interiors, which we denote as facets. Each facet Γ̂(ζ) ⊂ ∂Ω̂
is assumed to be flat, and we denote its (constant) outward unit normal vector by n(ζ) ∈ Sd−1. On
each facet, we then introduce N (ζ)

qf ∈ N quadrature nodes and weights given, respectively, by

{ξ(ζ,i)}
i∈{1:N(ζ)

qf
} ⊂ Γ̂(ζ), {ω(ζ,i)}

i∈{1:N(ζ)
qf
} ⊂ R+

0 . (12)
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As in Del Rey Fernández et al. [47, Section 3], we restrict our attention to the class of SBP operators
for which the boundary matrices in (9) can be constructed as

E(m) :=
Nf∑
ζ=1

n̂(ζ)
m

(
R(ζ))TB(ζ)R(ζ), (13)

where B(ζ) ∈ RN
(ζ)
qf
×N(ζ)

qf is a diagonal matrix with entries B(ζ)
ij := ω(ζ,i)δij , and R(ζ) ∈ RN

(ζ)
qf
×Nq is

an interpolation/extrapolation operator of degree r(ζ) ≥ p, satisfying the accuracy conditions

R(ζ)v =
[
V (ξ(ζ,1)), . . . , V (ξ(ζ,N(ζ)

qf
))
]T
, ∀V ∈ Pr(ζ)(Ω̂). (14)

As a special case of the decomposition in (13), we note that E(m) can be made diagonal by constructing
SBP operators for which the nodal sets in (12) all form subsets of the volume quadrature nodes,
wherein R(ζ) simply selects boundary values from nodal vectors such as those in (7). Such SBP
operators, denoted here as diagonal-E operators, are analogous to those on one-dimensional nodal
sets including both endpoints, and were first constructed on triangles by Chen and Shu [23].

2.5. Orthogonal polynomials and Gaussian quadrature rules
The fundamental building blocks used for constructing the triangular and tetrahedral SBP

operators developed by the authors in [28] are Jacobi and Legendre polynomials as well as their
associated Gaussian quadrature rules and interpolants, the basic properties of which we will review
here. The normalized Jacobi polynomials are denoted by P (a,b)

i ∈ Pi([−1, 1]), satisfying∫ 1

−1
P

(a,b)
i (η)P (a,b)

j (η)(1− η)a(1 + η)b dη = δij , ∀ a, b > −1. (15)

Such polynomials can be constructed through recurrence relations, as shown, for example, by
Hesthaven and Warburton [48, Appendix A]. For a given non-negative integer q, the Gaussian
quadrature rules corresponding to a Jacobi weight with exponents a and b have nodes {η(a,b)

q,i }i∈{0:q} ⊂
[−1, 1] given by the q + 1 solutions to a polynomial equation. Such equations are given by

Gauss: P
(a,b)
q+1 (η) = 0, (16a)

Gauss-Radau: (1 + η)P (a,b+1)
q (η) = 0, (16b)

Gauss-Lobatto: (1− η2)P (a+1,b+1)
q−1 (η) = 0, (16c)

where the Gauss, Gauss-Radau, and Gauss-Lobatto families of quadrature rules include zero, one,
and two endpoints of the interval, respectively.2 The Lagrange polynomials {`(a,b)q,i }i∈{0:q} associated
with such a nodal set constitute a basis for Pq([−1, 1]) satisfying `(a,b)q,i (η(a,b)

q,j ) = δij and are given by

`
(a,b)
q,i (η) :=

∏
j∈{0:q}\{i}

η − η(a,b)
q,j

η
(a,b)
q,i − η

(a,b)
q,j

. (17)

The corresponding Gaussian quadrature weights {ω(a,b)
q,i }i∈{0:q} can then be expressed as

ω
(a,b)
q,i :=

∫ 1

−1
`
(a,b)
q,i (η)(1− η)a(1 + η)b dη, (18)

2Here, we define Gauss-Radau quadrature rules including a node at the left endpoint. By flipping the sign of η in
(16b), we obtain a rule including the right endpoint instead. We also note that Gauss-Lobatto rules require q ≥ 1.
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−→
χ

Figure 1: Illustration of the collapsed coordinate transformation ξ = χ(η) from the square to the reference triangle

where alternative expressions for such weights can be found, for example, in references such as
Karniadakis and Sherwin [49, Appendix B]. The resulting quadrature rule satisfies

q∑
i=0

V (η(a,b)
q,i )ω(a,b)

q,i =
∫ 1

−1
V (η)(1− η)a(1 + η)b dη, ∀V ∈ P2q+δ([−1, 1]), (19)

where δ = 1 for Gauss nodes, δ = 0 for Gauss-Radau nodes, and δ = −1 for Lobatto nodes. In the
special case of a = b = 0, we recover the familiar Legendre polynomials and the Legendre-Gauss
(LG), Legendre-Gauss-Radau (LGR), Legendre-Gauss-Lobatto (LGL) quadrature rules.

3. Tensor-product summation-by-parts operators in collapsed coordinates

In an earlier paper [28], the present authors proposed a procedure for constructing SBP operators
of arbitrary degree on triangles and tetrahedra, which, unlike those developed previously, are sparse
and possess a tensor-product structure, allowing for the application of sum-factorization techniques.
In this section, we briefly review the essential steps involved in constructing such operators, where
we refer to the above paper for details regarding the construction of SBP operators and more broadly
to Karniadakis and Sherwin [49] regarding SEM formulations in collapsed coordinates.

3.1. Tensor-product summation-by-parts operators on the reference triangle
The reference element on which we construct our triangular SBP operators is taken to be

Ω̂ :=
{
ξ ∈ [−1, 1]2 : ξ1 + ξ2 ≤ 0

}
, (20)

where, as a convention, we number the facets (i.e. edges of the triangle) counter-clockwise as

Γ̂(1) :=
{
ξ ∈ Ω̂ : ξ2 = −1

}
, Γ̂(2) :=

{
ξ ∈ Ω̂ : ξ1 + ξ2 = 0

}
, Γ̂(3) :=

{
ξ ∈ Ω̂ : ξ1 = −1

}
. (21)

The collapsed coordinate transformation from the square to the reference triangle is then given by

χ(η) :=
[ 1

2 (1 + η1)(1− η2)− 1,
η2

]
, (22)

which is illustrated in Figure 1. Letting qm ∈ N0 denote the degree of the approximation in the
ηm coordinate, tensor-product quadrature rules are obtained with nodes {ξ(i)}i∈{1:Nq} ⊂ Ω̂ and
corresponding weights {ω(i)}i∈{1:Nq} ⊂ R+ given for a multi-index α ∈ {0 : q1} × {0 : q2} as

ξ(σ(α)) := χ
(
η(0,0)
q1,α1

, η(0,0)
q2,α2

)
, ω(σ(α)) := 1− η(0,0)

q2,α2

2 ω(0,0)
q1,α1

ω(0,0)
q2,α2

, (23)
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where σ : {0 : q1} × {0 : q2} → {1 : Nq} is a bijective mapping which defines an ordering of the
Nq := (q1 +1)(q2 +1) volume quadrature nodes, and we use the notation introduced in Section 2.5 for
Gaussian quadrature rules. Similarly, we let qf ∈ N0 and define the N (ζ)

qf := qf + 1 facet quadrature
nodes and weights in (12) as

ξ(1,i) := χ(η(0,0)
qf ,i−1,−1), ξ(2,i) := χ(1, η(0,0)

qf ,i−1), ξ(3,i) := χ(−1, η(0,0)
qf ,i−1),

ω(1,i) := ω
(0,0)
qf ,i−1, ω(2,i) :=

√
2ω(0,0)

qf ,i−1, ω(3,i) := ω
(0,0)
qf ,i−1.

(24)

Defining the volume and facet quadrature weight matrices W ∈ RNq×Nq and B(ζ) ∈ RN
(ζ)
qf
×N(ζ)

qf with
entries given byWij := ω(i)δij andB(ζ)

ij := ω(ζ,i)δij , respectively, derivative operatorsD(m) ∈ RNq×Nq
can be constructed by applying the chain rule to a tensor-product Lagrange interpolant in collapsed
coordinates, resulting in

D
(1)
σ(α)σ(β) := 2

1− η(0,0)
q2,α2

d`(0,0)
q1,β1

dη1
(η(0,0)
q1,α1

)δα2β2 , (25a)

D
(2)
σ(α)σ(β) := 1 + η

(0,0)
q1,α1

1− η(0,0)
q2,α2

d`(0,0)
q1,β1

dη1
(η(0,0)
q1,α1

)δα2β2 + δα1β1

d`(0,0)
q2,β2

dη2
(η(0,0)
q2,α2

). (25b)

Similarly, the matrices R(ζ) ∈ RN
(ζ)
qf
×Nq have entries given by

R
(1)
i,σ(β) := `

(0,0)
q1,β1

(η(0,0)
qf ,i−1)`(0,0)

q2,β2
(−1), R

(2)
i,σ(β) := `

(0,0)
q1,β1

(1)`(0,0)
q2,β2

(η(0,0)
qf ,i−1),

R
(3)
i,σ(β) := `

(0,0)
q1,β1

(−1)`(0,0)
q2,β2

(η(0,0)
qf ,i−1).

(26)

In this work, we construct SBP operators of degree q ∈ N0 using LG quadrature rules in all directions,
with q1 = q2 = qf = q. As a consequence of [28, Theorem 3.1], such operators are guaranteed to
satisfy the conditions of Definition 2, with boundary operators in the form of (13).

3.2. Tensor-product summation-by-parts operators on the reference tetrahedron
For tetrahedral elements, the reference domain is given by

Ω̂ :=
{
ξ ∈ [−1, 1]3 : ξ1 + ξ2 + ξ3 ≤ −1

}
, (27)

with the facets (i.e. faces of the tetrahedron) numbered as

Γ̂(1) :=
{
ξ ∈ Ω̂ : ξ2 = −1

}
, Γ̂(2) :=

{
ξ ∈ Ω̂ : ξ1 + ξ2 + ξ3 = −1

}
,

Γ̂(3) :=
{
ξ ∈ Ω̂ : ξ1 = −1

}
, Γ̂(4) :=

{
ξ ∈ Ω̂ : ξ3 = −1

}
.

(28)

The collapsed coordinate transformation χ : [−1, 1]3 → Ω̂ from the cube to the tetrahedron, as
depicted in Figure 2, is constructed from three successive applications of (22), resulting in

χ(η) :=

 1
4 (1 + η1)(1− η2)(1− η2)− 1,

1
2 (1 + η2)(1− η3)− 1,

η3

. (29)

Similarly to the triangular case, we let qm ∈ N0 denote the degree of the approximation in the ηm
coordinate and introduce Nq := (q1 + 1)(q2 + 1)(q3 + 1) tensor-product volume quadrature nodes,
which are ordered using the bijective mapping σ : {0 : q1} × {0 : q2} × {0 : q3} → {1 : Nq}. Taking
(a, b) = (0, 0) in the η1 and η2 directions and (a, b) = (1, 0) in the η3 direction, we obtain

ξ(σ(α)) := χ
(
η(0,0)
q1,α1

, η(0,0)
q2,α2

, η(1,0)
q3,α3

)
, ω(σ(α)) := (1− η(0,0)

q2,α2)(1− η(1,0)
q3,α3)

8 ω(0,0)
q1,α1

ω(0,0)
q2,α2

ω(1,0)
q3,α3

. (30)
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−→
χ

Figure 2: Illustration of the collapsed coordinate transformation ξ = χ(η) from the cube to the reference tetrahedron

Defining a collapsed coordinate system (ηf1, ηf2) on each face of the tetrahedron, we let qf1, qf2 ∈ N0

and introduce the bijective mapping σf : {0 : qf1} × {0 : qf2} → {1 : N (ζ)
qf }, where N

(ζ)
qf :=

(qf1 + 1)(qf2 + 1) denotes the number of nodes on the facet Γ̂(ζ) ⊂ ∂Ω̂. If a Jacobi quadrature rule
with (a, b) = (1, 0) is used in the ηf2 coordinate, the facet quadrature nodes are given by

ξ(1,σf (α)) := χ(η(0,0)
qf1,α1

,−1, η(1,0)
qf2,α2

), ξ(2,σf (α)) := χ(1, η(0,0)
qf1,α1

, η(1,0)
qf2,α2

),

ξ(3,σf (α)) := χ(−1, η(0,0)
qf1,α1

, η(1,0)
qf2,α2

), ξ(4,σf (α)) := χ(η(0,0)
qf1,α1

, η(1,0)
qf2,α2

,−1),
(31)

and the corresponding weights are

ω(1,σf (α)) := 1
2ω

(0,0)
qf1,α1

ω(1,0)
qf2,α2

, ω(2,σf (α)) :=
√

3
2 ω(0,0)

qf1,α1
ω(1,0)
qf2,α2

,

ω(3,σf (α)) := 1
2ω

(0,0)
qf1,α1

ω(1,0)
qf2,α2

, ω(4,σf (α)) := 1
2ω

(0,0)
qf1,α1

ω(1,0)
qf2,α2

.

(32)

The entries of the differentiation and interpolation/extrapolation matrices are then given by

D
(1)
σ(α)σ(β) := 4

(1− η(0,0)
q2,α2)(1− η(1,0)

q3,α3)
d`(0,0)
q1,β1

dη1
(η(0,0)
q1,α1

)δα2β2δα3β3 , (33a)

D
(2)
σ(α)σ(β) := 2(1 + η

(0,0)
q1,α1)

(1− η(0,0)
q2,α2)(1− η(1,0)

q3,α3)
d`(0,0)
q1,β1

dη1
(η(0,0)
q1,α1

)δα2β2δα3α3

+ 2
1− η(1,0)

q3,α3

δα1β1

d`(0,0)
q2,β2

dη2
(η(0,0)
q2,α2

)δα3β3 , (33b)

D
(3)
σ(α)σ(β) := 2(1 + η

(0,0)
q1,α1)

(1− η(0,0)
q2,α2)(1− η(1,0)

q3,α3)
d`(0,0)
q1,β1

dη1
(η(0,0)
q1,α1

)δα2β2δα3α3

+ 1 + η
(0,0)
q2,α2

1− η(1,0)
q3,α3

δα1β1

d`(0,0)
q2,β2

dη2
(η(0,0)
q2,α2

)δα3β3 + δα1β1δα2β2

d`(1,0)
q3,β3

dη3
(η(1,0)
q3,α3

), (33c)

and

R
(1)
σf (α)σ(β) := `

(0,0)
q1,β1

(η(0,0)
qf1,α1

)`(0,0)
q2,β2

(−1)`(1,0)
q3,β3

(η(1,0)
qf2,α2

), (34a)

R
(2)
σf (α)σ(β) := `

(0,0)
q1,β1

(1)`(0,0)
q2,β2

(η(0,0)
qf1,α1

)`(1,0)
q3,β3

(η(1,0)
qf2,α2

), (34b)

R
(3)
σf (α)σ(β) := `

(0,0)
q1,β1

(−1)`(0,0)
q2,β2

(η(0,0)
qf1,α1

)`(1,0)
q3,β3

(η(1,0)
qf2,α2

), (34c)

R
(4)
σf (α)σ(β) := `

(0,0)
q1,β1

(η(0,0)
qf1,α1

)`(0,0)
q2,β2

(η(1,0)
qf2,α2

)`(1,0)
q3,β3

(−1), (34d)
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respectively, where the diagonal matrices W and B(ζ) are defined similarly to the triangular case
using the quadrature weights in (30) and (32), respectively. In this paper, we use Gauss quadrature
rules with respect to the Jacobi weights indicated in the superscripts, and we take q1, q2, q3, qf1,
and qf2 to be all equal to q ∈ N0. It then follows from [28, Theorem 4.1] that such choices result in
diagonal-norm SBP operators of degree q for which the boundary matrices are given as in (13).

Remark 5. The choices of ω(σ(α)) := ω
(0,0)
q1,α1ω

(1,0)
q2,α2/2 and ω(σ(α)) := ω

(0,0)
q1,α1ω

(1,0)
q2,α2ω

(2,0)
q3,α3/8 for triangles

and tetrahedra, respectively, are made in [29] and [30] in order to use the Jacobi weight to subsume
the factor in (23) or (30) resulting from the Jacobian determinant of the collapsed coordinate
transformation. However, such Jacobi weights lead to nodal derivative operators in (25) and (33)
which do not, in general, satisfy the SBP property on the reference triangle and tetrahedron,
respectively. The operators introduced in [28], which are constructed specifically to satisfy the SBP
property on the reference simplex, thus differ from existing SEM operators in collapsed coordinates.

4. Entropy-stable discontinuous spectral-element framework

In this section, we detail how the SBP operators described in the previous section can be used
to construct entropy-stable DSEMs of any order on curvilinear unstructured grids. Due to the
generality of the SBP approach, however, the formulations which we present can be used with
any set of diagonal-norm SBP operators on the reference triangle or tetrahedron for which the
boundary matrices can be decomposed as in (13). While we introduce the proposed schemes within
the context of a generalized framework in order to enable the unified implementation and analysis of
DSEMs using SBP operators and to facilitate the comparison of the proposed methods to existing
schemes, efficient algorithms require consideration of the particular properties of the operators which
constitute a discretization, a topic which we will address in Section 5.

4.1. Mesh and coordinate transformation
The first step in constructing a DSEM is to subdivide the spatial domain Ω into a mesh or grid,

which consists of a collection {Ω(κ)}κ∈{1:Ne} of Ne ∈ N closed, bounded, and connected elements
Ω(κ) ⊂ Ω with nonempty interiors, satisfying

Ne⋃
κ=1

Ω(κ) = Ω̄ and Ω̊(κ) ∩ Ω̊(ν) = ∅, ∀κ 6= ν. (35)

We denote the characteristic element size for such a mesh as h ∈ R+. In this work, we assume
that the mesh is time invariant and that each element is the image of the reference triangle or
tetrahedron under a polynomial mapping X(κ) ∈ [Ppg (Ω̂)]d of total degree pg ∈ N. Such a mapping
is given in terms of a multivariate Lagrange basis {`(i)pg }i∈{1:N∗

pg
} associated with a set of nodes

{ξ(i)
pg }i∈{1:N∗

pg
} ⊂ Ω̂ as

X(κ)(ξ) :=
N∗
pg∑

i=1
x(κ,i)
pg `(i)pg (ξ), (36)

where {x(κ,i)
pg }i∈{1:N∗

pg
} are the prescribed physical positions of the mapping nodes. To ensure

a watertight mesh, we assume that the mapping nodes contain a subset of nodes on each facet
Γ̂(ζ) ⊂ ∂Ω̂ which are unisolvent for the corresponding trace space Ppg (Γ̂(ζ)) := {V |Γ̂(ζ) : V ∈ Ppg (Ω̂)},
thus resulting in continuity at element interfaces. Denoting the Jacobian of the transformation by
∇ξX(κ)(ξ) ∈ Rd×d and defining J (κ)(ξ) := det(∇ξX(κ)(ξ)), we assume that the mapping is bijective
and orientation preserving, satisfying

J (κ)(ξ) > 0, ∀ ξ ∈ Ω̂. (37)
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The adjugate of the Jacobian matrix is given by G(κ)(ξ) := det(∇ξX(κ)(ξ))(∇ξX(κ)(ξ))−1 with
entries (often referred to as the metric terms in the literature) satisfying the metric identities,

d∑
l=1

∂G
(κ)
lm (ξ)
∂ξl

= 0, ∀ ξ ∈ Ω̂, ∀m ∈ {1 : d}. (38)

Using the metric identities, we can express (1a) in conservation form on the reference element as

J (κ)(ξ)∂U(X(κ)(ξ), t)
∂t

+
d∑
l=1

∂

∂ξl

(
d∑

m=1
G

(κ)
lm (ξ)Fm(U(X(κ)(ξ), t))

)
= 0. (39)

Further details regarding the formulation of conservation laws in curvilinear coordinates are provided,
for example, in Pulliam and Zingg [50, Section 4.2] and Kopriva [51, Section 6.2].

4.2. Approximation of the metric terms
Considering a mapping using polynomials of degree pg as in (36), the metric terms are polynomials

of degree pg − 1 in two dimensions and degree 2pg − 2 in three dimensions. Since operations such as
differentiation using SBP operators are exact for polynomials of at most degree q, we cannot expect
that a discrete analogue of the metric identities in (38) will hold unless pg ≤ q+ 1 in two dimensions
or pg ≤ bq/2c+ 1 in three dimensions. To circumvent this requirement for a subparametric mapping
in three-dimensional case, we use an adaptation by Chan and Wilcox [38, Section 5] of Kopriva’s
approximation of the metric terms in conservative curl form [52, Eq. (36)], which is itself based on
techniques introduced by Thomas and Lombard [53]. To obtain such an approximation, we introduce
a Lagrange basis {`(i)q+1}i∈{1:N∗

q+1} for Pq+1(Ω̂) associated with a set of nodes {ξ(i)
q+1}i∈{1:N∗

q+1} ⊂ Ω̂
and construct polynomial interpolants of the form

r
(κ,1)
q+1 (ξ) :=

N∗
q+1∑
i=1

X
(κ)
3 (ξ(i)

q+1)∇ξX(κ)
2 (ξ(i)

q+1)`(i)q+1(ξ), (40a)

r
(κ,2)
q+1 (ξ) :=

N∗
q+1∑
i=1

X
(κ)
3 (ξ(i)

q+1)∇ξX(κ)
1 (ξ(i)

q+1)`(i)q+1(ξ), (40b)

r
(κ,3)
q+1 (ξ) :=

N∗
q+1∑
i=1

X
(κ)
1 (ξ(i)

q+1)∇ξX(κ)
2 (ξ(i)

q+1)`(i)q+1(ξ). (40c)

The above functions r(κ,m)
q+1 ∈ [Pq+1(Ω̂)]3 are used to define the matrix of approximate metric terms

G(κ)(ξ) :=
[
−∇ξ × r(κ,1)

q+1 (ξ), ∇ξ × r(κ,2)
q+1 (ξ), ∇ξ × r(κ,3)

q+1 (ξ)
]T
, (41)

which has entries of degree q and satisfies (38) by construction. Using the exact metric terms in
two dimensions and the approximation (41) in three dimensions, we can compute the outward unit
normal vector to the facet Γ(κ,ζ) ⊂ ∂Ω(κ) which is the image of Γ̂(ζ) under the mapping X(κ) as

n(κ,ζ)(X(κ)(ξ)) := G(κ)(ξ)Tn̂(ζ)

J (κ,ζ)(ξ) , where J (κ,ζ)(ξ) := ‖G(κ)(ξ)Tn̂(ζ)‖. (42)

Remark 6. In general, the normals computed as in (42) are not exact when the metric terms are
computed approximately using (41). However, if the analytically defined mesh is watertight and the
nodes used for the interpolants in (40) define a continuous approximation space, the approximate
normals remain equal and opposite at element interfaces (see, for example, [38, Theorem 5]).
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4.3. Modal polynomial expansions on triangles and tetrahedra
The focus of this paper is on modal formulations, in which the degrees of freedom for the semi-

discrete approximation to the eth solution variable on the kth element are taken to be the expansion
coefficients with respect to a polynomial basis {φ(i)}i∈{1:N∗

p } of degree p ≤ q contained within the
vector ũ(h,κ,e)(t) ∈ RN

∗
p . Such coefficients define an approximate solution U (h,κ)(·, t) ∈ [Pp(Ω̂)]Nc as

Ue(X(κ)(ξ), t) ≈ U (h,κ)
e (ξ, t) :=

N∗
p∑

i=1
ũ

(h,κ,e)
i (t)φ(i)(ξ), (43)

resulting in a global approximation given piecewise by U(x, t) ≈ Uh(x, t) := U (h,κ)((X(κ))−1(x), t)
for x ∈ Ω(κ). Evaluating (43) at each volume quadrature node, the vector u(h,κ,e)(t) ∈ RNq of nodal
solution values can be expressed in terms of the generalized Vandermonde matrix V ∈ RNq×N

∗
p as

u(h,κ,e)(t) = V ũ(h,κ,e)(t), where Vij := φ(j)(ξ(i)). (44)

In order to construct polynomial bases on the triangle and tetrahedron for which operations such as
(44) are amenable to sum factorization when tensor-product quadrature rules in collapsed coordinates
are used, we follow [49, Section 3.2] and define the one-dimensional principal functions

ψ
(α1)
1 (η1) :=

√
2P (0,0)

α1
(η1), ψ

(α1,α2)
2 (η2) := (1− η2)α1P (2α1+1,0)

α2
(η2),

ψ
(α1,α2,α3)
3 (η3) := 2(1− η3)α1+α2P (2α1+2α2+2,0)

α3
(η3).

(45)

The normalized Proriol-Koornwinder-Dubiner (PKD) orthogonal polynomials [34–36] are then given
in terms of collapsed coordinates on the reference triangle as

φ(π(α))(χ(η)) := ψ
(α1)
1 (η1)ψ(α1,α2)

2 (η2), (46)

and on the reference tetrahedron as

φ(π(α))(χ(η)) := ψ
(α1)
1 (η1)ψ(α1,α2)

2 (η2)ψ(α1,α2,α3)
3 (η3), (47)

where we order α ∈ N (p) using the bijection π : N (p)→ {1 : N∗p }. The “warped” tensor-product
structure of the PKD basis allows for such a matrix or its transpose to be applied in O(pd+1)
operations through sum factorization when tensor-product quadrature rules are used with O(p)
nodes in each direction, as described, for example, in [49, Sections 4.1.6.1 and 4.1.6.2]. Moreover,
since the principal functions in (45) have been scaled to obtain an orthonormal basis, the reference
mass matrix M := V TWV is the identity matrix if the quadrature rule in (11) is of degree τ ≥ 2p.

Remark 7. A nodal formulation is recovered by taking V to be the identity matrix and directly
evolving the nodal solution vector u(h,κ,e)(t). Such collocation-based approaches using tensor-product
LGL [16, 17] or LG [54] quadrature rules are popular for quadrilateral and hexahedral elements
due to the numerical solution being available at the volume quadrature nodes (and, in the case of
LGL quadrature, the facet quadrature nodes) without the need to perform the matrix operation in
(44). When using tensor-product SBP operators on triangular and tetrahedral elements, however,
we are primarily interested in modal formulations, as, unlike nodal formulations based on collapsed
coordinates, they are not subject to the severe explicit time step restriction resulting from the
singularity of the mapping in (22) or (29). As discussed by the authors in [28, Section 7.4] in the
context of the linear advection equation, the spectral radii for the modal tensor-product DSEMs
on triangles and tetrahedra scale at most quadratically with the polynomial degree, similarly to
DSEMs using multidimensional SBP operators based on symmetrical nodal sets. Additionally, modal
formulations allow for the decoupling of the degree p of the solution polynomial from the SBP
operator degree q and volume quadrature degree τ , which enables the use of over-integration while
retaining a minimal number of solution degrees of freedom for a given order of accuracy.
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4.4. Discontinuous spectral-element methods using summation-by-parts operators
A weak-form DG approximation of (1) can be derived either by integrating by parts against a

smooth test function on the physical element and performing a change of variables within each of
the resulting integrals, or by integrating the transformed conservation law in (39) by parts against a
smooth test function on the reference element. In either case, we approximate each solution variable
as in (43) and consider test functions belonging to the same space, resulting in∫

Ω̂
V (ξ)J (κ)(ξ)∂U

(h,κ)(ξ, t)
∂t

dξ =
d∑
l=1

∫
Ω̂

∂V (ξ)
∂ξl

d∑
m=1

G
(κ)
lm (ξ)Fm(U (h,κ)(ξ, t)) dξ

−
Nf∑
ζ=1

∫
Γ̂(ζ)

V (ξ)F ∗
(
U (h,κ)(ξ, t), U (h,κ,+)(ξ, t), n(κ,ζ)(X(κ)(ξ))

)
ds, ∀V ∈ Pp(Ω̂),

(48)

where a numerical flux function F ∗ : Υ×Υ×Sd−1 → RNc has been used to resolve the discontinuity in
the global numerical solution at each facet, on which we denote the exterior solution as U (h,κ,+)(ξ, t) ∈
Υ. In order to obtain an algebraic formulation of (48), we begin by forming the diagonal matrices
J (κ), G(κ,l,m) ∈ RNq×Nq and J (κ,ζ), N (κ,ζ,m) ∈ RN

(ζ)
qf
×N(ζ)

qf with entries given by

J
(κ)
ij := J (κ)(ξ(i))δij , G

(κ,l,m)
ij := G

(κ)
lm (ξ(i))δij ,

J
(κ,ζ)
ij := J (κ,ζ)(ξ(ζ,i))δij , N

(κ,ζ,m)
ij := n(κ,ζ)

m (X(κ)(ξ(ζ,i)))δij .
(49)

Defining the physical mass matrix as M (κ) := V TWJ (κ)V , we then obtain a semi-discrete formulation
governing the evolution of the vector of modal coefficients for the expansion in (43) as

M (κ) dũ(h,κ,e)(t)
dt = V Tr(h,κ,e)(t), (50)

where the form of r(h,κ,e)(t) ∈ RNq determines the particular DSEM recovered within the present
framework. Evaluating the nodal solution as u(h,κ,e)(t) := V ũ(h,κ,e)(t), we gather the solution
variables at the volume and facet quadrature nodes as

u
(h,κ)
i (t) :=


u

(h,κ,1)
i (t)

...
u

(h,κ,Nc)
i (t)

, u
(h,κ,ζ)
i (t) :=


[R(ζ)u(h,κ,1)(t)]i

...
[R(ζ)u(h,κ,Nc)(t)]i

, (51)

and form the vectors f (κ,m,e)(t) ∈ RNq and f (∗,κ,ζ,e) ∈ RN
(ζ)
qf with entries given by

f
(κ,m,e)
i (t) := Fme(u(h,κ,e)

i (t)), (52a)

f
(∗,κ,ζ,e)
i (t) := F ∗e (u(h,κ,ζ)

i (t), u(+,κ,ζ,e)
i (t), n(κ,ζ)(X(κ)(ξ(ζ,i)))), (52b)

where u(+,κ,ζ,e)
i (t) ∈ Υ denotes the exterior solution state. With such definitions in place, the

right-hand side of (48) can be discretized directly using nodal SBP operators as

r(h,κ,e)(t) :=
d∑
l=1

(
Q(l))T d∑

m=1
G(κ,l,m)f (κ,m,e)(t)−

Nf∑
ζ=1

(
R(ζ))TB(ζ)J (κ,ζ)f (∗,κ,ζ,e)(t), (53)

where it follows from a similar analysis to [40, Section 4] that the resulting scheme is conservative
for an appropriate choice of numerical flux as well as energy stable for linear, constant-coefficient
problems on meshes for which the mapping from reference to physical space is affine.3

3While the SBP operators in [40] act on modal coefficients rather than nodal values, the analysis is essentially the
same, relying on the SBP property and the exact differentiation and interpolation/extrapolation of constants.
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To ensure energy stability for linear problems on curvilinear meshes, a property which cannot be
guaranteed for discretizations in the form of (53), the schemes proposed by the authors in [39] and
[28] employ a skew-symmetric weak formulation adapted from the work of Gassner and Kopriva [55]
and Del Rey Fernández et al. [47, 56], which is given by

r(h,κ,e)(t) := 1
2

d∑
l=1

((
Q(l))T d∑

m=1
G(κ,l,m)f (κ,m,e)(t)−

d∑
m=1

G(κ,l,m)Q(l)f (κ,m,e)(t)
)

−
Nf∑
ζ=1

(
R(ζ))TB(ζ)J (κ,ζ)

(
f (∗,κ,ζ,e)(t)− 1

2

d∑
m=1

N (κ,ζ,m)R(ζ)f (κ,m,e)(t)
)
.

(54)

In Section 4.6, we will construct modifed formulations, which, unlike (53) or (54), are provably
entropy stable for nonlinear systems of conservation laws endowed with suitable entropy functions
and entropy fluxes, satisfying semi-discrete bounds analogous to (6). However, we must first address
the issue of inverting the mass matrix in (50) in order to obtain the time derivative.

4.5. Weight-adjusted approximation of the inverse mass matrix
Even when using orthonormal bases on the reference element such as those presented in Section 4.3,

the mass matrix M (κ) appearing on the left-hand side of (50) is dense when the mapping from the
reference element to the physical element is not affine, and its inverse lacks a tensor-product structure
amenable to sum factorization. Obtaining the time derivative for such a scheme in the context
of explicit temporal integration thus requires either the storage and application of a non-tensorial
factorization or inverse, or, otherwise, the solution of a dense N∗p by N∗p linear system, for each
curved element in the mesh. To obtain a fully explicit formulation for the time derivative in (50),
we use a weight-adjusted approximation given by(

M (κ))−1 ≈M−1V TW
(
J (κ))−1

V M−1 =:
(
M̃ (κ))−1

. (55)

The above approximation was initially proposed by Chan et al. [37] for the purpose of reducing
storage requirements for curved elements. However, it was also demonstrated in [28] that such an
approach preserves the tensor-product operator structure which would otherwise be lost by taking
the inverse of the mass matrix. The time derivative can then be computed explicitly as

dũ(h,κ,e)(t)
dt =

(
M̃ (κ))−1

V Tr(h,κ,e)(t), (56)

where we can exploit sum factorization in the application of the operators V and V T in (55), as
discussed in Section 4.3. While the formulation in (56) is not, in general, discretely conservative
with respect to the quadrature rule defined by the diagonal entries of W as in (11), we restore
conservation using a technique proposed by Chan and Wilcox [38, Lemma 2]. In the context of a
mapping in the form of (36), such a modification involves approximating the determinant of the
mapping Jacobian, which is of degree 2pg − 2 in two dimensions and 3pg − 3 in three dimensions, by
an interpolant of degree pg given in terms of the nodal basis used in (36) as

J (κ)(ξ) :=
Ndpg∑
i=1

det(∇ξX(κ)(ξ(i)
pg ))`(i)pg (ξ), (57)

and using such an approximation to define J (κ) in (55), noting that such a modification does not
affect the (approximate) metric terms G(κ)(ξ) used to compute the right-hand side of (50).
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4.6. Entropy-stable flux-differencing formulation
In this section, we will develop a formulation of the entropy-stable modal approach introduced

by Chan [25] which lends itself to an efficient implementation when used with the tensor-product
operators on triangles and tetrahedra described in Section 3. We begin by considering a fundamental
issue in the development of entropy-stable modal DSEMs, which is the fact that the entropy variables
may not lie within approximation space in which the solution is sought. As such, they cannot be
taken as test functions in the discrete variational formulation, a critical step in establishing entropy
stability for such schemes. To resolve this, entropy-stable modal formulations employ an entropy
projection, referring to the approximation of the entropy variables as

We(U (h,κ)(ξ, t)) ≈
N∗
p∑

i=1
w̃

(h,κ,e)
i (t)φ(i)(ξ), (58)

where, as in [38, Eq. (31)], we obtain the modal coefficients through a weight-adjusted projection as

w̃(h,κ,e)(t) :=
(
M̃ (κ))−1

V TWJ (κ)[We(u(h,κ)
1 (t)), . . . ,We(u(h,κ)

Nq
(t))
]T
. (59)

Using the generalized Vandermonde matrix to evaluate the projected entropy variables at the volume
quadrature nodes as w(h,κ,e)(t) := V w̃(h,κ,e)(t), we then define

w
(h,κ)
i (t) :=


w

(h,κ,1)
i (t)

...
w

(h,κ,Nc)
i (t)

, w
(h,κ,ζ)
i (t) :=


[R(ζ)w(h,κ,1)(t)]i

...
[R(ζ)w(h,κ,Nc)(t)]i

. (60)

Next, we present the following definition of an entropy-conservative two-point flux, which is an
essential component of the entropy-stable methods described in this work.

Definition 3. A continuously differentiable bivariate function F#
m : Υ×Υ→ RNc is an entropy-

conservative two-point flux if it is symmetric with respect to its two arguments, consistent with the
PDE in (1a) such that F#

m(U,U) = Fm(U) for all U ∈ Υ, and satisfies(
W(U+)−W(U−)

)T
F#
m(U−, U+) = Ψm(W(U+))− Ψm(W(U−)), ∀U−, U+ ∈ Υ. (61)

First proposed in [6], the property in (61) is referred to in the literature as Tadmor’s condition
or the shuffle condition, and enables the chain rule to be circumvented when deriving semi-discrete
forms of bounds such as (6) in the context of an entropy-stable discretization. At element interfaces,
we use entropy-stable or entropy-conservative directional numerical fluxes, for which the following
definition is introduced (see, for example, [23, Definitions 3.1 and 3.2]).

Definition 4. A directional numerical flux function F ∗ : Υ×Υ× Sd−1 → RNe is entropy stable if,
for any direction n ∈ Sd−1, it satisfies the conservation and consistency conditions given by

F ∗(U−, U+,n) = −F ∗(U−, U+,−n), ∀U−, U+ ∈ Υ, (62a)
F ∗(U,U,n) = F (U,n), ∀U ∈ Υ, (62b)

respectively, as well as the entropy condition, which is defined analogously to (61) by(
W(U+)−W(U−)

)T
F ∗(U−, U+,n) ≤

(
Ψ(W(U+))− Ψ(W(U−))

)
· n ∀U−, U+ ∈ Υ. (63)

Such a numerical flux is entropy conservative if (63) holds as an equality for all arguments.
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Although other choices are possible, we assume here that the numerical interface flux consists of
an entropy-conservative two-point flux in the normal direction augmented by a local Lax-Friedrichs
dissipative term (see, for example, Ranocha [57, Section 6.1]). Such a flux takes the form

F ∗(U−, U+,n) := F#(U−, U+,n)− 1
2λ(U−, U+,n)(U+ − U−), (64)

where the first term on the right-hand side is an entropy-conservative directional flux given by

F#(U−, U+,n) :=
d∑

m=1
nmF

#
m(U−, U+), (65)

and λ(U−, U+,n) ∈ R+ is an estimate of the maximum wave speed in the normal direction.
In order to construct an expression for r(h,κ,e)(t) in (56) which results in an entropy-stable

scheme, we require the evaluation of the averaged volume and surface metric terms as

{{G(κ)
lm }}ij := 1

2

[
G(κ)(ξ(i)) +G(κ)(ξ(j))

]
lm
, (66a)

{{J (κ,ζ)n(κ,ζ)
m }}ij := 1

2

[
G(κ)(ξ(i))Tn̂(ζ) +G(κ)(ξ(ζ,j))Tn̂(ζ)

]
m
, (66b)

which define the matrices {{G(κ)
lm }} ∈ RNq×Nq and {{J (κ,ζ)n

(κ,ζ)
m }} ∈ RNq×N

(ζ)
qf , respectively. The

entropy-conservative two-point flux functions are then computed using the entropy-projected con-
servative variables, a term introduced in [25] in reference to the conservative variables evaluated in
terms of the projected entropy variables in (59), as given by

F
(κ,m,e)
ij (t) := F#

me(U(w(h,κ)
i (t)),U(w(h,κ)

j (t))), (67a)

F
(κ,ζ,m,e)
ij (t) := F#

me(U(w(h,κ)
i (t)),U(w(h,κ,ζ)

j (t))), (67b)

which define the matrices F (κ,m,e)(t) ∈ RNq×Nq and F (κ,ζ,m,e)(t) ∈ RNq×N
(ζ)
qf . Defining the exterior

values of the entropy variables as w(h,κ,ζ,+)
i (t) ∈ RNc , we likewise evaluate f (∗,κ,ζ,e)(t) ∈ RN

(ζ)
qf as

f
(∗,κ,ζ,e)
i (t) := F ∗e

(
U(w(h,κ,ζ)

i (t)), U(w(h,κ,ζ,+)
i (t)), n(κ,ζ)(X(κ)(ξ(ζ,i)))

)
. (68)

Having introduced the essential components of the scheme, flux-differencing weight-adjusted modal
DSEM is now obtained by computing the time derivative as in (56), with the nodal right-hand side
computed as

r(h,κ,e)(t) :=−
d∑
l=1

(
2S(l) �

d∑
m=1
{{G(κ)

lm }} � F
(κ,m,e)(t)

)
1(Nq) (69)

−
Nf∑
ζ=1

(
C(κ,ζ,e)(t)1(N(ζ)

qf
) −

(
R(ζ))T(B(ζ)J (κ,ζ)f (∗,κ,ζ,e)(t)−

(
C(κ,ζ,e)(t)

)T1(Nq)
))

,

where � denotes the Hadamard product given by [A�B]ij := AijBij , and we define

C(κ,ζ,e)(t) :=
(
R(ζ))TB(ζ) �

d∑
m=1
{{J (κ,ζ)n(κ,ζ)

m }} � F (κ,ζ,m,e)(t). (70)

Remark 8. The above formulation can be used with any set of SBP operators for which the boundary
matrices can be decomposed as in (13), and it will be shown in Section 6 that the formulation is, in
fact, mathematically equivalent to that in [38, Eq. (35)] when the same SBP operators are used in
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both schemes, a fact which we will exploit in our analysis of conservation, free-stream preservation,
and entropy stability. When diagonal-E operators are used, the terms in (69) involving the correction
operator C(κ,ζ,e)(t) in (70) cancel, and hence the scheme becomes

r(h,κ,e)(t) =−
d∑
l=1

(
2S(l) �

d∑
m=1
{{G(κ)

lm }} � F
(κ,m,e)(t)

)
1(Nq) −

Nf∑
ζ=1

(
R(ζ))TB(ζ)J (κ,ζ)f (∗,κ,ζ,e)(t)

=−
d∑
l=1

(
2Q(l) �

d∑
m=1
{{G(κ)

lm }} � F
(κ,m,e)(t)

)
1(Nq)

−
Nf∑
ζ=1

(
R(ζ))TB(ζ)J (κ,ζ)

(
f (∗,κ,ζ,e)(t)−

d∑
m=1

N (κ,ζ,m)f (κ,ζ,m,e)(t)
)
, (71)

where the first equality recovers the optimized weak formulation from Ranocha et al. [58, Section 2.1],
and we have used the SBP property to obtain the second equality, recovering a strong formulation
consisting of a flux-differencing term plus a penalty term (i.e. a simultaneous approximation term in
SBP terminology) as in the original flux-differencing approach proposed by Fisher [8].
Remark 9. When (1) is a linear symmetric hyperbolic system with a constant coefficient matrix, the
mean-value flux F#

m(U−, U+) := 1
2 (Fm(U−) + Fm(U+)) conserves the quadratic entropy S(U) :=

1
2U

TU , and the resulting formulation in (69) is then equivalent to the energy-stable scheme in (54).

5. Efficient implementation

In this section, we discuss and analyze several important algorithmic considerations pertaining
to the implementation of the proposed schemes, particularly regarding techniques for exploiting the
sparsity and tensor-product structure of the SBP operators described in Section 3 within the context
of an entropy-stable flux-differencing DSEM. The algorithms described here are implemented within
the open-source Julia code StableSpectralElements.jl developed by the first author.4

5.1. Exploiting operator sparsity in flux differencing
As discussed, for example, by Ranocha et al. [58, Figure 3], the cost of an entropy-stable scheme

is dominated by the flux-differencing terms, for which the primary expense is the evaluation of
two-point entropy-conservative flux functions between pairs of quadrature nodes. By rewriting the
volume contributions appearing in the first term on the right-hand side of (69) or (71) as[(

2S(l) �
d∑

m=1
{{G(κ)

lm }} � F
(κ,m,e)(t)

)
1(Nq)

]
i

=
Nq∑
j=1

S
(l)
ij F

#
e

(
U(w(h,κ)

i (t)), U(w(h,κ)
j (t)), {{2g(κ,l)}}ij

)
,

(72)

we observe, as noted in [58, Section 2.2], that due to the symmetry of {{G(κ)
lm }} � F

(κ,m,e)(t) and the
skew-symmetry of S(l), it is only necessary to iterate over the indices i and j corresponding to the
strictly upper-triangular parts of such matrices. Moreover, the sum need only be taken over the
indices for which S

(l)
ij 6= 0, and the corresponding values of the vector

{{2g(κ,l)}}ij :=
[
G

(κ)
l1 (ξ(i)) +G

(κ)
l1 (ξ(j)), . . . , G(κ)

ld (ξ(i)) +G
(κ)
ld (ξ(j))

]T (73)

4StableSpectralElements.jl is available at https://github.com/tristanmontoya/StableSpectralElements.jl.
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within the directional two-point flux can be computed on the fly in order to avoid storing the dense
matrices {{G(κ)

lm }} in memory. Computing the sum on the right-hand side of (72) for all i ∈ {1 : Nq}
therefore requires the evaluation of the two-point flux function, which for entropy-stable schemes is
typically a relatively expensive operation involving the logarithmic mean, once per nonzero entry in
the strictly upper-triangular part of S(l), with the total number of required floating-point operations
being proportional to such a quantity. Similarly, expressing the averaged metric terms in (66b) as

{{J (κ,ζ)n(κ,ζ)}}ij :=
[
{{J (κ,ζ)n

(κ,ζ)
1 }}ij , . . . , {{J (κ,ζ)n

(κ,ζ)
d }}ij

]T
, (74)

we can evaluate the contributions from C(κ,ζ,e)(t)1(N(ζ)
qf

) and (C(κ,ζ,e)(t))T1(Nq) on the second line
of (69) simultaneously by initializing both such vectors to zero and then iterating over values of i
and j such that [(R(ζ))TB(ζ)]ij 6= 0. Within each iteration, we compute the corresponding two-point
flux and multiply each component by the corresponding nonzero matrix entry to obtain

C
(κ,ζ,e)
ij (t)←

[
(R(ζ))TB(ζ)]

ij
F#
e

(
U(w(h,κ)

i (t)), U(w(h,κ,ζ)
j (t)), {{J (κ,ζ)n(κ,ζ)}}ij

)
. (75)

Such values are then accumulated within C(κ,ζ,e)(t)1(N(ζ)
qf

) and (C(κ,ζ,e)(t))T1(Nq) as

[
C(κ,ζ,e)(t)1(N(ζ)

qf
)]
i
←
[
C(κ,ζ,e)(t)1(N(ζ)

qf
)]
i
+ C

(κ,ζ,e)
ij (t), (76a)[(

C(κ,ζ,e)(t)
)T1(Nq)

]
j
←
[(
C(κ,ζ,e)(t)

)T1(Nq)
]
j

+ C
(κ,ζ,e)
ij (t) (76b)

before proceeding to the next nonzero entry of the matrix (R(ζ))TB(ζ).
Letting nnz(A) denote the number of nonzero entries in a given matrix A, it follows from

the above discussion that the number of element-local directional two-point flux evaluations (i.e.
neglecting the numerical interface flux, which is computed in a separate routine) required to evaluate
the right-hand side in (69) can be computed as

Nflux :=
d∑
l=1

1
2 nnz

(
S(l)

)
+

Nf∑
ζ=1

nnz
((
R(ζ))TB(ζ)

)
. (77)

To the authors’ knowledge, the matrices S(l) are dense for all existing high-order entropy-stable
discretizations on triangles or tetrahedra. Recalling from [21] and [47] that the minimum number of
volume quadrature nodes for an SBP operator of degree q is the dimension N∗q of the associated
total-degree polynomial space, which scales as O(qd), the number of two-point fluxes, and hence the
computational work required to evaluate the flux-differencing volume terms, is therefore expected to
scale as O(q2d). By contrast, such matrices are sparse for the operators described in Section 3, with
their one-dimensional coupling along lines of nodes resulting in the same O(qd+1) complexity as for
tensor-product DSEMs on quadrilaterals or hexahedra.
Remark 10. While the second term in (77) indeed vanishes for diagonal-E multidimensional SBP
operators due to the simplifications made on the first line of (71), such operators require quadrature
rules using a much larger number of nodes for a given degree than would otherwise be needed, and
are currently only available for modest polynomial degrees.5 For more general non-tensor-product
quadrature rules without collocated facet nodes, the matrices (R(ζ))TB(ζ) are also dense, coupling
every volume quadrature node to every facet quadrature node.

5To the authors’ knowledge, the highest-order diagonal-E SBP operators on tetrahedra are those recently proposed
by Worku et al. [59], who provide quadrature rules of up to degree 10 suitable for SBP operators of up to degree 5.
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5.2. Exploiting sum factorization for tensor-product operators
In addition to the reduction in computational complexity of the flux-differencing terms, the

algorithmic benefits of tensor-product operators discussed in [28, Section 6] in regard to the skew-
symmetric scheme in (54) extend directly to the matrix-vector products in the proposed entropy-stable
formulations, which involve V and R(ζ) as well as their transposes. As such, we are able to exploit the
structure of such matrices through sum factorization in the evaluation of the conservative variables
at the volume and facet quadrature nodes as

u(h,κ,e)(t)← V ũ(h,κ,e)(t), (78a)

u(h,κ,ζ,e)(t)← R(ζ)u(h,κ,e)(t), ∀ ζ ∈ {1 : Nf}, (78b)

as well as in the weight-adjusted projection of the entropy variables as

w̃(h,κ,e)(t)←M−1V TW
(
J (κ))−1

V M−1V TWJ (κ)[We(u(h,κ)
1 (t)), . . . ,We(u(h,κ)

Nq
(t))
]T
, (79a)

w(h,κ,e)(t)← V w̃(h,κ,e)(t), (79b)

w(h,κ,ζ,e)(t)← R(ζ)w(h,κ,e)(t), ∀ ζ ∈ {1 : Nf}, (79c)

where we also exploit the fact that M−1 is the identity matrix due to the PKD basis remaining
orthonormal under all quadrature rules considered in this work. Furthermore, we employ sum
factorization when applying (R(ζ))T to obtain r(h,κ,e)(t) in (69), and, finally, in the evaluation of
the time derivative in (56) using the weight-adjusted inverse as

dũ(h,κ,e)(t)
dt ←M−1V TW

(
J (κ))−1

V M−1V Tr(h,κ,e)(t). (80)

Such an approach results in the entire algorithm for computing the local time derivative requiring
O(pd+1) floating-point operations under the standard assumption that q scales as O(p) with the
polynomial degree p of the modal expansion. To the authors’ knowledge, this is not achieved by
any prior entropy-stable method on triangles or tetrahedra, for which the required dense matrix
operations are of O(p2d) complexity. Moreover, by avoiding the construction of physical operator
matrices and averaging the metric terms on the fly, memory usage is minimized, with per-element
memory requirements scaling as O(pd) due to the only necessary storage being geometric information
at each volume and facet quadrature node, and, optionally, precomputed diagonal entries of the
matrices W (J (κ))−1, WJ (κ), and B(ζ)J (κ,ζ).

5.3. Comparison to multidimensional summation-by-parts operators
To make the above discussion more quantitative, we now analyze the number of two-point flux

evaluations using (77) for specific SBP operators of varying polynomial degrees, where we compare
our sparse tensor-product operators on triangles and tetrahedra to those constructed using symmetric
quadrature rules as described by Chan [25, Lemma 1], for which the matrices S(l) and (R(ζ))TB(ζ)

are dense. We designate the latter class of operator as multidimensional to distinguish them from the
tensor-product operators described in Section 3. On the triangle, we construct such multidimensional
SBP operators using 2q Xiao-Gimbutas quadrature rules [60] for volume integration and degree
2q + 1 LG quadrature rules for facet integration. On the tetrahedron, the multidimensional SBP
operators are constructed using degree 2q Jaśkowiec-Sukumar quadrature rules [61] for volume
integration and degree 2q Xiao-Gimbutas triangular quadrature rules for facet integration. Examples
of such quadrature nodes are shown in Figure 3 alongside those used for the tensor-product operators
described in Section 3. In Figure 4, we plot the number of required two-point flux evaluations given
by (77) for each class of operator over a range of polynomial degrees from q = 2 to q = 15, with the
exception of the multidimensional operators on tetrahedra, for which suitable symmetric quadrature
rules are only currently available, to the authors’ knowledge, for SBP operators of degree q ≤ 10.
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(a) Multidimensional quadrature nodes on the triangle (b) Multidimensional quadrature nodes on the tetrahedron

(c) Tensor-product quadrature nodes on the triangle (d) Tensor-product quadrature nodes on the tetrahedron

Figure 3: Multidimensional and tensor-product quadrature nodes for SBP operators of degree q = 4

Since dense matrix storage is used in our implementation of the multidimensional operators, the
only zero entries considered in (77) for such operators are those along the main diagonal of the
skew-symmetric matrix S(l), although we observe numerically that a small fraction of the off-diagonal
entries are, in fact, on the order of machine precision.

The scaling in Figure 4 is observed to be slightly better than the asymptotic estimates for
both classes of operators, and the number of two-point flux evaluations required for the proposed
tensor-product approach is smaller than that required when using multidimensional SBP operators
for all polynomial degrees considered. As expected, this discrepancy increases with the polynomial
degree; for example, the number of two-point flux evaluations is reduced by factors of 1.56 at q = 2,
2.78 at q = 5, and 4.57 at q = 10 when using tensor-product operators on triangles, and by factors of
1.88 at q = 2, 3.44 at q = 5, and 10.99 at q = 10 when using tensor-product operators on tetrahedra.
We also consider the total number of floating-point operations per variable incurred in evaluating
the matrix-vector products in (69), (78), (79), and (80) on a given element, where we take p = q in
all cases. The results of such an analysis, which are displayed in Figure 5, are qualitatively similar to
those in Figure 4 for higher polynomial degrees, although the benefit of the tensor-product operators
for low polynomial degrees is less substantial in this regard, requiring roughly the same number of
floating-point operations as the multidimensional operators, for example, at p = 2.

There are several caveats which must be addressed regarding the preceding discussion and
analysis. First, we note that due to their use of a larger number of volume and facet quadrature
nodes than typical multidimensional operators of the same degree, the tensor-product operators
require a somewhat greater number of conversions between conservative and entropy variables
as well as a somewhat larger number of numerical interface flux evaluations. These operations
do not, however, typically constitute the most significant contribution to the overall expense of
an entropy-stable scheme and incur a cost which grows more slowly with the polynomial degree
than that of the flux-differencing terms. Second, we recognize that comparisons on the basis of
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(a) Triangles (b) Tetrahedra

Figure 4: Number of entropy-conservative two-point flux evaluations in local flux-differencing terms

(a) Triangles (b) Tetrahedra

Figure 5: Total number of floating-point operations per variable in local operator evaluation

floating-point operation count, while more objective than implementation-specific and hardware-
specific timing comparisons, are only truly representative of computational cost for compute-bound
algorithms. For lower polynomial degrees, algorithm performance is often substantially limited
by memory bandwidth, and hence the tensor-product operators may not necessarily outperform
their multidimensional counterparts in practice for such regimes. However, due to the arithmetic
intensity of an SEM increasing with the polynomial degree of the discretization (see, for example,
the roofline analysis in [33]), floating-point operation count indeed becomes a relevant measure at
higher polynomial degrees, which is precisely where the proposed tensor-product approach shows
significant cost savings. The point at which such benefits become substantial is dependent on the
specifics of the implementation and hardware (e.g. considering the memory access pattern, cache size,
as well as the use of single-instruction-multiple-data vectorization or multithreading) as well as the
PDE and choice of two-point flux, and is therefore an important topic of future investigation within
the context of the high-performance implementation and evaluation of the proposed algorithms.

6. Conservation, free-stream preservation, and entropy stability

The previous section demonstrates that the use of sparse tensor-product operators in collapsed
coordinates enables algorithmic improvements relative to comparable entropy-stable discretizations
using multidimensional SBP operators, particularly for higher polynomial degrees. We will now
demonstrate that the proposed schemes are conservative, free-stream preserving, and entropy stable
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due to their equivalence to formulations based on hybridized summation-by-parts operators.6 The
construction of such hybridized operators from SBP operators satisfying the conditions of Definition 2
is demonstrated with the following lemma.
Lemma 1. Given any nodal SBP operator D(l) := W−1(S(l) + 1

2E
(l)) on the reference element in

the sense of Definition 2 for which E(l) takes the form of (13), we can construct a block matrix

Q̄(l) :=


S(l) 1

2 n̂
(1)
l

(
R(1))TB(1) · · · 1

2 n̂
(Nf )
l

(
R(Nf ))TB(Nf )

− 1
2 n̂

(1)
l B(1)R(1) 1

2 n̂
(1)
l B(1)

...
. . .

− 1
2 n̂

(Nf )
l B(Nf )R(Nf ) 1

2 n̂
(Nf )
l B(Nf )

, (81)

satisfying the following “SBP-like” property from [25, Eq. (32)]:

Q̄(l) +
(
Q̄(l))T = Ē (l), where Ē

(l) :=


0(Nq×Nq)

n̂(1)B(1)

. . .
n̂(Nf )B(Nf )

. (82)

Proof. Aside from the fact that our notation separates the operators on individual facets, the result
is identical to [63, Theorem 1]. The proof relies on the fact that when adding (81) to its transpose,
the top-left block vanishes by the skew-symmetry of S(l) and the off-diagonal blocks vanish due to
the blocks of the first row being the negative transposes of those in the first column, and hence the
diagonal matrix on the right-hand side of (82) is all that remains.

The hybridized operators in (81) are of dimension N̄q by N̄q, where N̄q := Nq+N (1)
qf + · · ·+N (Nf )

qf .
Within a flux-differencing formulation, they operate on block matrices of two-point fluxes given by

F̄ (κ,m,e)(t) :=


F (κ,m,e)(t) F (κ,1,m,e)(t) · · · F (h,Nf ,m,e)(t)
F (κ,1,m,e)(t) F (κ,1,1,m,e)(t) · · · F (κ,1,Nf ,m,e)(t)

...
... . . . ...

F (κ,Nf ,m,e)(t) F (κ,Nf ,1,m,e)(t) · · · F (κ,Nf ,Nf ,m,e)(t)

, (83)

where F (κ,ζ,η,m,e)(t) ∈ RN
(ζ)
qf
×N(η)

qf couples quadrature nodes on the facets Γ̂(ζ), Γ̂(η) ⊂ ∂Ω̂ as

F
(κ,ζ,η,m,e)
ij (t) := F#

me(U(w(h,κ,ζ)
i (t)),U(w(h,κ,η)

j (t))). (84)
As in [38], hybridized SBP operators on the physical element are constructed in split form as

Q̄(κ,m) := 1
2

d∑
l=1

(
Q̄(l)Ḡ(κ,l,m) + Ḡ(κ,l,m)Q̄(l)

)
, (85)

where the diagonal matrices of concatenated volume and facet metric terms are given by

Ḡ(κ,l,m) :=


G(κ,l,m)

G(κ,1,l,m)

. . .
G(κ,Nf ,l,m)

, (86)

6Such operators were originally introduced by Chan in [25] as decoupled SBP operators, with the term hybridized
SBP operator popularized following the review paper by Chen and Shu [26]. We note, however, that this notion of
“hybridization” should be distinguished from that associated with hybridized DG methods (see, for example, Cockburn
et al. [62]), which exploit static condensation to reduce the number of coupled degrees of freedom.
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with the blocks G(κ,ζ,l,m) ∈ RN
(ζ)
qf
×N(ζ)

qf defined by G(κ,ζ,l,m)
ij := G

(κ)
lm (ξ(ζ,i))δij . The following lemma

demonstrates the relation of such a split form to the metric-averaging approach used in Section 4.6.

Lemma 2. The split-form operator in (85) can be rewritten as

Q̄(κ,m) =
d∑
l=1

Q̄(l) � {{Ḡ(κ)
lm }}, (87)

where the entries of {{Ḡ(κ)
lm }} ∈ RN̄q×N̄q are given by {{Ḡ(κ)

lm }}ij := 1
2 (Ḡ(κ,l,m)

ii +Ḡ(κ,l,m)
jj ). Additionally,

an SBP-like property analogous to (82) is satisfied on the physical element, as given by

Q̄
(κ,m) +

(
Q̄

(κ,m))T =


0(Nq×Nq)

B(1)J (κ,1)N (κ,1,m)

. . .
B(Nf )J (κ,Nf )N (κ,Nf ,m)

, (88)

provided that J (κ,ζ) and N (κ,ζ,m) are computed using (42) based on the volume metric terms.

Proof. Expressing (85) in indicial form and factorizing, we obtain

Q̄
(κ,m,n)
ij = 1

2

d∑
l=1

(
Q̄

(l)
ij Ḡ

(κ,l,m)
jj + Ḡ

(κ,l,m)
ii Q̄

(l)
ij

)
= 1

2

d∑
l=1

Q̄
(l)
ij

(
Ḡ

(κ,l,m)
ii + Ḡ

(κ,l,m)
jj ), (89)

and hence the result in (87) follows directly from the definition of the Hadamard product. The
SBP-like property in (88) follows from (82) and (85), where we obtain the right-hand side using (42)
and the fact that the hybridized boundary operators Ē (l) are diagonal.

Our analysis of the schemes constructed in Section 4 then requires the following assumption.

Assumption 1. The discretization given by (56) with r(h,κ,e)(t) defined as in (69) is constructed
using a set of diagonal-norm SBP operators on the reference element sharing the same positive-
definite matrix W , with boundary operators in the form of (13). Whether computed exactly or
approximately as in (57), the Jacobian determinant of the mapping from the reference element to
each physical element satisfies (37). The two-point flux used to compute (67a) and (67b) is consistent
and symmetric in the sense of Definition 3, while the directional numerical flux in (68) is consistent
and conservative in the sense of Definition 4.

Remark 11. The entropy conditions in (61) and (63) will not be invoked until the proof of entropy
stability. As such, the analysis of conservation and free-stream preservation applies more generally
to a wide range of flux-differencing DSEMs, which, as shown in [17], can be constructed so as to
recover various split forms in the literature through the particular choice of two-point flux.

We now have the following theorem relating the formulation proposed in Section 4.6 to one which
is readily analyzed using the properties of hybridized SBP operators.

Theorem 1. Under Assumption 1, the DSEM given by (56) with r(h,κ,e)(t) defined as in (69) is
equivalent to the following hybridized SBP formulation proposed in [38, Eq. (35)]:

M̃ (κ) dũ(h,κ,e)(t)
dt =−

[
V

V f

]T d∑
m=1

(
2Q̄(κ,m) � F̄ (κ,m,e)(t)

)
1(N̄q)

−
Nf∑
ζ=1

(
R(ζ))TB(ζ)J (κ,ζ)

(
f (∗,κ,ζ,e)(t)−

d∑
m=1

N (κ,ζ,m)f (κ,ζ,m,e)(t)
)
,

(90)
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where we define

V f :=


R(1)V

...
R(Nf )V

, f (κ,ζ,m,e)(t) :=

Fme
(
U(w(h,κ,ζ)

1 (t))
)

...
Fme

(
U(w(h,κ,ζ)

N
(ζ)
qf

(t))
)
. (91)

Proof. Substituting (69) into (56) and grouping all Hadamard products into block matrices gives

M̃ (κ) dũ(h,κ,e)(t)
dt =

[
V

V f

]T d∑
l=1

(
2S̄ (l) �

d∑
m=1
{{Ḡ(κ)

lm }} � F̄
(κ,m,e)(t)

)
1(N̄q)

−
Nf∑
ζ=1

(
R(ζ))TB(ζ)J (κ,ζ)f (∗,κ,ζ,e)(t),

(92)

where the facet correction terms in (70) have been incorporated into the hybridized operator

S̄ (l) :=


S(l) 1

2 n̂
(1)
l

(
R(1))TB(1) · · · 1

2 n̂
(Nf )
l

(
R(Nf ))TB(Nf )

− 1
2 n̂

(1)
l B(1)R(1)

...
− 1

2 n̂
(Nf )
l B(Nf )R(Nf )

. (93)

Recognizing the matrix in (93) as the skew-symmetric part of Q̄(l), we invoke the SBP-like property
from Lemma 1 to obtain 2S̄ (l) = 2Q̄(l) − Ē (l). Substituting such a relation into (92) and moving
the inner sum outside the Hadamard product, the flux-differencing terms can be rewritten as[

V

V f

]T d∑
l=1

(
2S̄ (l) � {{Ḡ(κ)

lm }} � F̄
(κ,m,e)(t)

)
1(N̄q) = (94)

[
V

V f

]T d∑
l=1

(
2Q̄(l) � {{Ḡ(κ)

lm }} � F̄
(κ,m,e)(t)

)
1(N̄q) −

Nf∑
ζ=1

(
R(ζ))TB(ζ)J (κ,ζ)N (κ,ζ,m)f (κ,ζ,m,e)(t),

where the second term on the right-hand side results from the consistency of the two-point flux
and the fact that Ē (l) is diagonal. Finally, we invoke Lemma 2 to express the first term on the
right-hand side of (94) using the split-form operator in (85). Substituting the result into (92) then
yields the scheme in (90).

As a consequence of the above equivalence, the conservation, free-stream preservation, and
entropy stability of the proposed discretizations follow directly from the analysis in [25] and [38].
The proofs of such results rely on the assumption of a conforming mesh in the following sense.

Assumption 2. For each pair of element indices κ, ν ∈ {1 : Ne} with κ 6= ν such that ∂Ω(κ)∩∂Ω(ν) 6=
∅, there exist a unique pair of facet indices ζ, η ∈ {1 : Nf} such that Γ(κ,ζ) = Γ(ν,η). Furthermore,
for every i ∈ {1 : N (ζ)

qf } there exists a unique j ∈ {1 : N (η)
qf } for which we have

n(κ,ζ)(X(κ)(ξ(ζ,i))) = −n(ν,η)(X(ν)(ξ(η,j))), ω(ζ,i)J (κ,ζ)(ξ(ζ,i)) = ω(η,j)J (ν,η)(ξ(η,j)), (95)

where the normals are computed as in (42) using the (exact or approximate) volume metric terms.

Remark 12. Warburton et al. [64] describe preprocessing algorithms for orienting local coordinate
systems on tetrahedra so as to obtain matching node positions in physical space, with a cost scaling
linearly with the number of elements. Such procedures ensure that the conditions of Assumption 2
are satisfied despite the asymmetry of the tensor-product facet quadrature nodes arising in the
tetrahedral case when using collapsed coordinate systems.
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Referring to [25] and [38] for further details, we summarize the critical steps of the analysis in the
remainder of this section, beginning with the following theorem establishing discrete conservation.

Theorem 2. Let Assumptions 1 and 2 hold and also assume that the Jacobian determinant of the
mapping, whether computed exactly or approximately as in (57), satisfies J (κ) ∈ Pp(Ω̂) and that
the quadrature rule in (11) induced by W is of degree τ ≥ 2p. The discretization given by (90), or,
equivalently, by (56) with r(h,κ,e)(t) defined as in (69), is then discretely conservative, satisfying

d
dt

Ne∑
κ=1

(
1(Nq)

)T
WJ (κ)u(h,κ,e)(t) = −

∑
Γ(κ,ζ)⊂∂Ω

(
1(N(ζ)

qf
))T

B(ζ)J (κ)f (∗,κ,ζ,e)(t). (96)

Proof. Letting the vector 1 ∈ RN
∗
p contain the modal expansion coefficients for the constant function

such that V 1 = 1(Nq), we use the skew-symmetry of the matrices S̄ (l) � {{Ḡ(κ)
lm }} � F̄ (κ,m,e) in (92)

and the exactness of R(ζ) for constant functions to obtain

d
dt

(
1 TM̃ (κ)ũ(h,κ,e)(t)

)
= −

Nf∑
ζ=1

(
1(N(ζ)

qf
))T

B(ζ)J (κ)f (∗,κ,ζ,e)(t), (97)

which is a statement of local conservation with respect to the weight-adjusted mass matrix. From
[38, Lemma 2], the exactness of the volume quadrature when U

(h,κ)
e J (κ) ∈ P2p(Ω̂) gives

1 TM̃ (κ)ũ(h,κ,e)(t) =
∫

Ω̂
U (h,κ)
e (ξ, t)J (κ)(ξ) dξ =

(
1(Nq)

)T
WJ (κ)u(h,κ,e)(t). (98)

Using the conservation property of the numerical interface flux and invoking Assumption 2 then
results in the statement of global conservation in (96).

Next, we present the following lemma proven in [38, Theorem 5], which establishes conditions
under which the hybridized SBP operators on the physical element satisfy a discrete form of (38).

Lemma 3. Assume that the metric terms, whether computed exactly or approximately, satisfy
G

(κ)
mn ∈ Pq(Ω̂) as well as the metric identities in (38), and that the normals are computed as in (42).

Then, the hybridized SBP operators in (85) satisfy the following discrete metric identities:

Q̄(κ,m)1(N̄q) = 0(N̄q), ∀m ∈ {1 : d}. (99)

The discrete metric identities are closely related to the free-stream preservation property, in
which a uniform solution state is guaranteed to remain constant in time. This is established for the
proposed schemes with the following theorem.

Theorem 3. Let Assumptions 1 and 2 hold and also assume that the discrete metric identities in
(99) are satisfied for all κ ∈ {1 : κ}. The scheme in (90), or, equivalently, in (56) with r(h,κ,e)(t)
defined as in (69), is then free-stream preserving, such that the right-hand side of (56) vanishes for
all κ ∈ {1 : Ne} and e ∈ {1 : Nc} for any uniform solution state satisfying the boundary conditions.

Proof. Considering the formulation in (90), the facet penalty on the second line vanishes when the
solution is identical on both sides of the interface due to the consistency property of the numerical
interface flux. Invoking the consistency of the two-point flux as well, we then see that the entire
right-hand side of (90) vanishes when (99) holds. Since the weight-adjusted mass matrix is invertible
by construction, the time derivative is zero, and the scheme is therefore free-stream preserving.

Invoking the entropy conditions in (61) and (63), we now present the following theorem, which
establishes that the proposed discretizations satisfy a discrete version of the bound in (6).
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Theorem 4. Let Assumptions 1 and 2 hold, and also assume that the discrete metric identities
in (99) are satisfied for all κ ∈ {1 : κ}, that the two-point flux used to compute (67a) and (67b) is
entropy conservative in the sense of Definition 3, and that the numerical interface flux is entropy
stable in the sense of Definition 4. The discretization given by (90), or, equivalently, by (56) with
r(h,κ,e)(t) defined as in (69), is then discretely entropy stable, satisfying the entropy balance

d
dt

Ne∑
κ=1

(
1(Nq)

)T
WJ (κ)s(h,κ)(t) ≤

∑
Γ(κ,ζ)⊂∂Ω

(
d∑

m=1

(
1(N(ζ)

qf
))T

B(ζ)J (κ)N (κ,ζ,m)ψ(κ,ζ,m)(t)

−
Nc∑
e=1

(
w(h,κ,e)(t)

)T(
R(ζ))TB(ζ)J (κ)f (∗,κ,ζ,e)(t)

)
,

(100)

where the entries of the vectors s(h,κ)(t) ∈ RNq and ψ(κ,ζ,m)(t) ∈ RN
(ζ)
qf are given, respectively, by

s
(h,κ)
i (t) := S(u(h,κ)

i (t)), ψ
(κ,ζ,m)
i (t) := Ψm(w(h,κ,ζ)

i (t)). (101)

Moreover, the entropy balance in (100) holds as an equality when the numerical interface flux is
entropy conservative, and the right-hand side vanishes for periodic boundary conditions.

Proof. The proof of entropy conservation for a non-dissipative interface flux is identical to that of
[38, Theorem 2], wherein we left-multiply (90) by (w(h,κ,e)(t))T, sum over e ∈ {1 : Nc}, and use the
metric identities in (99) as well as the SBP property in (88) to obtain the local entropy balance

d
dt

((
1(Nq)

)T
WJ (κ)s(h,κ)(t)

)
=

d∑
m=1

(
1(N(ζ)

qf
))T

B(ζ)J (κ)N (κ,ζ,m)ψ(κ,ζ,m)(t)

−
Nc∑
e=1

Nf∑
ζ=1

(
w(h,κ,ζ,e)(t)

)T
B(ζ)J (κ)f (∗,κ,ζ,e)(t).

(102)

For an entropy-conservative interface flux, summing (102) over all elements and splitting the interface
contributions between adjacent elements results in a global statement of entropy conservation,
corresponding to (100) being satisfied as an equality, where the boundary contributions vanish
similarly to the interior interface contributions for periodic problems. The entropy inequality for
an entropy-stable interface flux then follows in a straightforward manner, for example, from the
analysis in [23, Theorems 3.4 and 4.3].

7. Numerical experiments

We now present numerical experiments in which we assess the accuracy and robustness of the
entropy-conservative and entropy-stable DSEMs using tensor-product as well as multidimensional
SBP operators on triangles and tetrahedra through the numerical solution of the Euler equations
using StableSpectralElements.jl. The parameters used to run such simulations as well as the
Jupyter notebooks used to generate the figures appearing in this section are provided in this
paper’s reproducibility repository, which is available at https://github.com/tristanmontoya/
ReproduceEntropyStableDSEM.

7.1. Euler equations
The Euler equations constitute a system of Nc = d+ 2 coupled nonlinear PDEs governing the

conservation of mass, momentum, and energy for a compressible, inviscid, and adiabatic fluid. Such
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a system takes the form of (1), with the solution variables and flux components given by

U(x, t) :=


ρ(x, t)

ρ(x, t)V1(x, t)
...

ρ(x, t)Vd(x, t)
E(x, t)

, Fm(U(x, t)) :=


ρ(x, t)Vm(x, t)

ρ(x, t)V1(x, t)Vm(x, t) + P (x, t)δ1m
...

ρ(x, t)Vd(x, t)Vm(x, t) + P (x, t)δdm
Vm(x, t)(E(x, t) + P (x, t))

, (103)

where ρ(x, t) ∈ R denotes the fluid density, V (x, t) ∈ Rd denotes the flow velocity, E(x, t) ∈ R
denotes the total energy per unit volume, and P (x, t) ∈ R denotes the pressure. We obtain the
pressure using the equation of state for an ideal gas with constant specific heat,

P (x, t) = (γ − 1)
(
E(x, t)− 1

2ρ(x, t)‖V (x, t)‖2
)
, (104)

where γ > 1 is the specific heat ratio, which we take as 1.4 for air in all numerical experiments. The
Euler equations are hyperbolic for solutions belonging to the admissible set

Υ :=
{
U(x, t) ∈ Rd+2 : P (x, t), ρ(x, t) > 0

}
. (105)

Although there exist many entropy-entropy flux pairs which satisfy the conditions of Definition 1 for
the Euler equations (see, for example, Harten [65]), we restrict our attention to the choice of

S(U(x, t)) := −ρ(x, t)
γ − 1 ln

(
P (x, t)
ρ(x, t)γ

)
, F(U(x, t)) := −ρ(x, t)V (x, t)

γ − 1 ln
(
P (x, t)
ρ(x, t)γ

)
, (106)

which is shown in [20] to be the unique pair (up to an affine transformation) of entropy function and
entropy flux which also symmetrize the viscous terms of the compressible Navier-Stokes equations.

7.2. Entropy-conservative and entropy-stable flux functions
To obtain an entropy-conservative two-point flux in the sense of Definition 3 with respect to

the entropy function and entropy flux in (106), we first define the arithmetic mean and logarithmic
mean, respectively, as

{{a}} := 1
2
(
a− + a+), {{a}}ln :=

{
a+−a−

ln(a+)−ln(a−) , a− 6= a+

a−, a− = a+ , (107)

where we use Taylor-series approximations from Ranocha et al. [58, Algorithms 2 and 3] to compute
the logarithmic mean and its reciprocal in cases for which a− and a+ are nearly equal. The particular
entropy-conservative flux used in this work was proposed by Ranocha [66, 67], and is given by

F#
m(U−, U+) :=


{{ρ}}ln{{Vm}}

{{ρ}}ln{{Vm}}{{V1}}+ {{P}}δ1m
...

{{ρ}}ln{{Vm}}{{Vd}}+ {{P}}δdm
1
2{{ρ}}ln{{Vm}}

(
V − · V + + 1

γ−1{{ρ/P}}
−1
ln
)

+ 1
2
(
P−V +

m + P+V −m
)

. (108)

In addition to the entropy conservation property in (61), Ranocha’s flux is kinetic energy preserving
and pressure equilibrium preserving (see, for example, Ranocha and Gassner [68]). The interface
flux takes the form of (64), where we use Davis’s wave speed estimate [69], which is given by

λ(U−, U+,n) := max
(∣∣V − · n∣∣, ∣∣V + · n

∣∣)+ max
(√

γP−/ρ−,
√
γP+/ρ+

)
. (109)

In the results which are to follow, we refer to the schemes employing local Lax-Friedrichs dissipation
as entropy-stable methods. We also implement a variant without dissipation, in which the second
term on the right-hand side of (64) is absent; such schemes are denoted as entropy-conservative
methods.
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(a) Triangular mesh (b) Tetrahedral mesh (c) Tetrahedral mapping nodes

Figure 6: Examples of warped meshes and mapping nodes for pg = 4

7.3. Curvilinear meshes
The problems considered in this work are defined on the spatial domain Ω := (0, L)d, where

L ∈ R+ and d ∈ {2, 3}. The mesh is generated by beginning with a Cartesian grid with M edges
in each direction and splitting each quadrilateral into two triangles or each hexahedron into six
tetrahedra, resulting in Ne = 2M2 in two dimensions and Ne = 6M3 in three dimensions. Recalling
Remark 12, we use the second algorithm described in [30, Section 2.3], which was originally proposed
by Warburton et al. [64], to orient the local coordinate systems on each element in order to ensure
that Assumption 2 is satisfied for tetrahedral meshes. For both the triangular and tetrahedral
case, we use isoparametric mappings, corresponding to (36) with the choice of pg = p = q, where
the mapping nodes are obtained using the interpolatory warp-and-blend procedure from Chan and
Warburton [70]. An affine transformation is used to obtain the positions of the mapping nodes on
each element of the split Cartesian mesh. Following [54, Section 5], the mesh is then warped by
perturbing the mapping node positions as

x̃1 ← x1 + εL cos
(
π
L

(
x1 − 1

2
))

cos
( 3π
L

(
x2 − 1

2
))
,

x̃2 ← x2 + εL sin
( 4π
L

(
x̃1 − 1

2
))

cos
(
π
L

(
x2 − 1

2
))
,

(110)

in two dimensions, and as

x̃2 ← x2 + εL cos
( 3π
L

(
x1 − 1

2
))

cos
(
π
L

(
x2 − 1

2
))

cos
(
π
L

(
x3 − 1

2
))
,

x̃1 ← x1 + εL cos
(
π
L

(
x1 − 1

2
))

sin
( 4π
L

(
x̃2 − 1

2
))

cos
(
π
L

(
x3 − 1

2
))
,

x̃3 ← x3 + εL cos
(
π
L

(
x̃1 − 1

2
))

cos
( 2π
L

(
x̃2 − 1

2
))

cos
(
π
L

(
x3 − 1

2
))
,

(111)

in three dimensions, where, as in [28, Section 7.1], we take ε = 1/16 in both cases. The new node
positions x̃ are then used to define the mapping in (36). Finally, the metric terms are computed using
the approach described in Section 4.2, where in the three-dimensional case we use the conservative
curl formulation in (41), with the nodes used for the interpolation of degree q + 1 in (40) again
obtained using the interpolatory warp-and-blend procedure from [70]. Examples of curvilinear
meshes and the mapping nodes used to obtain such meshes are shown in Figure 6.

7.4. Accuracy tests
We assess the accuracy of the proposed entropy-conservative and entropy-stable discretizations

of the Euler equations under refinement with respect to the element size h as well as the polynomial
degree p in the context of smooth problems with known analytical solutions. The initial conditions
are prescribed in terms of the primitive variables ρ0(x), V 0(x), and P0(x), which are used to obtain
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(a) h-refinement on triangles, p = 4 (b) h-refinement on triangles, p = 5 (c) p-refinement on triangles, M = 4

(d) h-refinement on tetrahedra, p = 4 (e) h-refinement on tetrahedra, p = 5 (f) p-refinement on tetrahedra, M = 4

Figure 7: Convergence with respect to h and p for discretizations of the Euler equations; dashed and solid lines denote
density error for entropy-conservative and entropy-stable schemes, respectively

the right-hand side of (1b) as

U0(x) :=

 ρ0(x)
ρ0(x)V 0(x)

1
γ−1P0(x) + 1

2ρ0(x)‖V 0(x)‖2

. (112)

We consider the smooth density wave problem from Jiang and Shu [71, Section 7], for which the
initial values of the primitive variables are given by

ρ0(x) := 1 + 1
5 sin

(
2π
L

d∑
m=1

xm

)
, V 0(x) :=

[
1, . . . , 1

]T
, P0(x) := 1, (113)

on the domain Ω := (0, 2)d, with periodic boundary conditions applied in all directions. The solution
is advanced in time for one period of wave propagation (i.e. until a final time of T = 2) using a Julia
implementation [72] of the eighth-order Dormand-Prince algorithm described in [73, Section II.5],
with the time step taken sufficiently small for the temporal discretization error to be negligible in
comparison to that due to the spatial discretization.

Convergence is examined with respect to the nominal element size (taken here to be h := L/M)
as well as the polynomial degree p for entropy-conservative and entropy-stable DSEMs using the
tensor-product and multidimensional SBP operators on triangles and tetrahedra considered in
Section 5. The degree p of the solution expansion in (43) is taken to be equal to the degree q of
the SBP operators, and we report the L2 norm of the density error, which is computed numerically
using a quadrature rule of degree 35. Similar convergence behaviour was observed for the other
solution variables. Figure 7 demonstrates optimal O(hp+1) algebraic convergence under h-refinement
for the entropy-stable discretizations (i.e. those including interface dissipation) as well as exponential
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convergence under p-refinement, where we recall from Section 5 that the multidimensional SBP
operators on tetrahedra are only available for degrees up to ten. For a given mesh and polynomial
degree, the error norms obtained for the proposed tensor-product discretizations are found to be very
close to those obtained for their multidimensional counterparts, which suggests that their algorithmic
advantages discussed in Section 5 with respect to the ability to exploit operator sparsity and sum
factorization do not come at the expense of accuracy.
Remark 13. The numerical results are consistent with the conservation property established in
Theorem 2, with the time derivative on the left-hand side of (96) remaining close to machine
precision for all solution variables at approximately 100 equispaced snapshots taken during each test.
Furthermore, the rates of entropy dissipation given by the left-hand side of (100) are verified for the
entropy-conservative and entropy-stable schemes to be zero and non-positive, respectively, at all
snapshots (up to roundoff error levels close to machine precision), as is consistent with Theorem 4.

7.5. Robustness tests
High-order methods such as DSEMs are prone to numerical stability issues, particularly in the

context of under-resolved nonlinear problems, in which high-frequency numerical modes are produced
and potentially amplified by the discretization, resulting in non-physical blow-up or negative values
of thermodynamic quantities such as pressure or density (i.e. corresponding to solutions outside
the admissible set Υ). Such under-resolution commonly arises in simulations of turbulent fluid flow
problems, which are characterized by the cascade of energy from larger eddies to those progressively
smaller in size, eventually dissipating as heat due to the viscosity of the fluid (see, for example, Pope
[74, Chapter 6]). As the Euler equations do not model physical viscosity, the only dissipation present
is that inherent in the numerical scheme, which is typically small for a high-order method, thus
exposing the potentially destabilizing effects of under-resolved eddies. We therefore use simulations
of inviscid vortical flows to mimic worst-case scenarios with respect to under-resolved turbulence,
where we are interested in assessing whether the simulations run to completion and whether the
semi-discrete entropy bounds established in Section 6 are satisfied, rather than in evaluating the
accuracy of such simulations. In the two-dimensional case, we consider the Kelvin-Helmholtz
instability (KHI) problem described by Rueda-Ramı́rez and Gassner [75] and used for robustness
tests by Chan et al. [76], for which we define the smoothed step function

B(x) := tanh
(
15(x2 − 1

2 )
)
− tanh

(
15(x2 − 3

2 )
)

(114)

in order to obtain the initial condition, which is given in terms of the primitive variables by

ρ0(x) := 1
2 + 3

4B(x), V 0(x) :=
[

1
2
(
B(x)− 1), 1

10 sin(2πx1)
]T
, P0(x) := 1, (115)

on the domain Ω := (0, 2)2, with periodic boundary conditions in both directions. As in [76], we
integrate until a final time of T = 15. In three dimensions, we consider an inviscid Taylor-Green
vortex (TGV) problem, for which the initial condition is given on the periodic domain Ω := (0, 2π)3

as

ρ0(x) := 1, V 0(x) :=
[

sin(x1) cos(x2) cos(x3), − cos(x1) sin(x2) cos(x3), 0
]T
,

P0(x) := 1
γMa2 + 1

16

(
cos(2x1) + 2 cos(2x2) + cos(2x1) cos(2x3) + cos(2x2) cos(2x3)

)
,

(116)

where Ma ∈ R+ is the nominal Mach number. We run the TGV simulations until a final time of
T = 14, and, as in Pazner and Persson [77], we consider the nearly incompressible case of Ma = 0.1
in addition to the case of Ma = 0.7, where the latter is expected to pose a greater challenge to the
robustness of the proposed methods, specifically with respect to positivity preservation.

The Euler equations are solved for the above initial conditions using the proposed entropy-
conservative and entropy-stable DSEMs for polynomial degrees 4 to 8, taking M = 16 for the KHI
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(a) Kelvin-Helmholtz instability, multidi-
mensional operators on triangles

(b) Taylor-Green vortex, Ma = 0.1, mul-
tidimensional operators on tetrahedra

(c) Taylor-Green vortex, Ma = 0.7, mul-
tidimensional operators on tetrahedra

(d) Kelvin-Helmholtz instability, tensor-
product operators on triangles

(e) Taylor-Green vortex, Ma = 0.1,
tensor-product operators on tetrahedra

(f) Taylor-Green vortex, Ma = 0.7,
tensor-product operators on tetrahedra

Figure 8: Normalized entropy change for entropy-stable discretizations on triangles and tetrahedra

problem and M = 4 for the TGV problem. We integrate in time using the same explicit eighth-order
Dormand-Prince method used for the accuracy tests. The time step is taken to be sufficiently small
to ensure that the reported instances of instability result purely from the spatial discretization, and
we did not find any of the reported instabilities to be remedied by decreasing the time step size.
Without any additional stabilization beyond the interface dissipation provided by the numerical flux
in (64), all simulations ran to completion for the entropy-stable schemes using multidimensional
as well as tensor-product operators on triangles and tetrahedra. Figure 8 demonstrates that the
entropy is nonincreasing for all time in each of such cases, as expected from Theorem 4 for periodic
boundary conditions.

While the entropy-conservative simulations ran to completion for the TGV with Ma = 0.1,
incurring a change in entropy close to machine precision, such computations crashed for the TGV
with Ma = 0.7 as well as for the KHI due to negative densities or pressures. This reflects a well-known
limitation of the entropy analysis, namely that entropy stability does not guarantee positivity of
thermodynamic quantities. Although not provably positivity preserving, the entropy-stable schemes
using the dissipative interface flux in (64) did not incur negative densities or pressures for any of the
tests considered in this work, likely as a consequence of the dissipative term within the numerical flux
serving to dampen any oscillations which would otherwise eventually lead to a violation of positivity.
As a result, such schemes are highly robust even in the presence of substantially under-resolved
solution features. These results are consistent with the observations in [76], where the authors
demonstrated numerically that entropy-stable schemes which incorporate an entropy projection are
often able to avoid negative densities or pressures for challenging under-resolved problems without
the need for positivity-preserving limiters. We recognize, however, that such an approach may not
be sufficient to preserve positivity for problems with discontinuities, and the extension of subcell
limiting techniques such as those in [41] and [42] to the proposed tensor-product discretizations on
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triangles and tetrahedra is an important topic of future research.

8. Conclusions

We have developed discretizations of arbitrary order for nonlinear hyperbolic systems of conser-
vation laws which combine the geometric flexibility of curved triangular and tetrahedral elements
with the efficiency of tensor-product operators as well as the robustness of a provably entropy-stable
formulation. The main components of our proposed methodology are outlined below.

• The numerical solution is represented using an orthonormal PKD polynomial basis on the refer-
ence triangle or tetrahedron, which supports the efficient matrix-free evaluation of polynomials
at tensor-product quadrature nodes in collapsed coordinates through sum factorization.

• The flux-differencing volume terms of the DSEM are computed using sparse tensor-product
SBP operators in collapsed coordinates, significantly reducing the number of required entropy-
conservative two-point flux evaluations relative to discretizations using multidimensional SBP
operators based on symmetric quadrature rules, particularly at high polynomial degrees.

• A weight-adjusted approximation is used to invert the dense local mass matrices arising from
the use of curved elements, both in the evaluation of the time derivative and in the entropy
projection, allowing for the spatial residual to be obtained in O(pd+1) floating-point operations,
comparing favourably to the O(p2d) complexity of existing multidimensional formulations.

• The discrete metric identities, which must hold to obtain an entropy-stable and free-stream
preserving scheme, are satisfied by approximating the metric terms in conservative curl form.

This paper provides a comprehensive description of the mathematical and algorithmic aspects of
the proposed tensor-product DSEMs on triangles and tetrahedra, discussing their formulation and
efficient implementation as well as proving that they are conservative, free-stream preserving, and
entropy stable by rewriting them in an equivalent formulation based on hybridized SBP operators.
Furthermore, through the solution of the compressible Euler equations on curved triangular and
tetrahedral meshes, we numerically verify that the proposed DSEMs are conservative as well as entropy
conservative or dissipative (for discretizations with or without interface dissipation, respectively).
We also verify the schemes’ convergence properties for smooth solutions under h-refinement as
well as p-refinement, providing numerical evidence that the proposed discretizations using tensor-
product operators offer very similar accuracy to those using multidimensional SBP operators for
such problems. Finally, we demonstrate the robustness of our approach in a suite of challenging
under-resolved problems. Future work includes the extension of the proposed methodology to
prismatic elements as well as to problems with diffusive terms (e.g. the Navier-Stokes equations) and
those in non-conservative form (e.g. multiphase atmospheric flows). We are also interested in the
development of positivity-preserving subcell limiters for the proposed schemes as well as in practical
comparisons of accuracy, efficiency, and robustness relative to other entropy-stable DSEMs as well
as to those using other techniques such as over-integration to achieve robustness in practice.
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