
Efficient and Robust Spectral-Element
Methods on Triangles Using Tensor-Product

Summation-by-Parts Operators

Advanced Modeling and Simulation (AMS) Seminar Series
NASA Ames Research Center

Tristan Montoya and David W. Zingg

Institute for Aerospace Studies, University of Toronto
4925 Dufferin St, Toronto, ON M3H 5T6, Canada

October 20, 2022



1/35

Background
Numerical methods for conservation laws

High-fidelity predictions of multiscale phenomena in science and
engineering governed by time-dependent conservation laws
require numerical methods which are:

Efficient – deliver a desired level of accuracy at a reasonable
computational cost, scaling effectively to large problem sizes

Robust – consistently provide useful/physically meaningful
results for all problems/data within some well defined regime

Automated – achieve the above objectives with minimal user
intervention (e.g. parameter tuning or mesh generation)

Scale-resolving simulations of turbulent flows largely remain
intractable in practice using conventional second-order schemes,
requiring alternative methods meeting the above requirements
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Background
Discontinuous spectral-element methods

Discontinuous spectral-element
methods1 on unstructured grids offer:

High-order/spectral accuracy –
more accurate than second-order
methods for smooth regimes and low
error tolerances (for a given number
of degrees of freedom)
Flexibility – support for local
refinement either by decreasing the
element size (h) or increasing the
polynomial degree (p)
Performance on modern
hardware – compact formulations
with high arithmetic intensity
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1Element-based discretizations achieving high-order accuracy through interior DOF
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Background
Tensor-product vs. multidimensional approximations

Tensor-product

Fast matrix-free operator
evaluation (i.e. using sum
factorization2)
Typically restricted to quad
or hex elements, requires
more user intervention in
body-fitted mesh generation

Multidimensional

More automated meshing
of complex geometries,
facilitates hp-adaptation
Less efficient at higher
orders due to all-to-all
coupling of local degrees of
freedom

2Introduced in the context of spectral methods by Orszag (1980)
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Background
Collapsed coordinate transformation

−→
χ

A collapsed coordinate transformation (Duffy, 1982) can be
used to enable sum factorization on triangles or other domains3

Combines the efficiency of tensor-product approximations with the
geometric flexibility of general multidimensional element types

3Approach proposed by Dubiner (1991); early applications to continuous Galerkin
(CG) methods by Sherwin and Karniadakis (1995) and to discontinuous Galerkin
(DG) schemes by Lomtev and Karniadakis (1999) and Kirby et al. (2000)
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Background
Tensor-product spectral-element methods in collapsed coordinates

Collapsed-coordinate approach is now a fairly mature technology,
forming the basis for triangular/tetrahedral/prismatic/pyramidal
elements in Nektar++ (Cantwell et al., 2015; Moxey et al., 2020)

Results in efficient algorithms on modern hardware, for example,
with SIMD vectorization (Moxey, Amici, and Kirby, 2020)

However, high-order methods often lack robustness when used to
solve nonlinear problems or with curvilinear meshes, relying on ad
hoc techniques to achieve stability in practice, for example:

Filtering
Spectral vanishing viscosity (SVV)
Over-integration

These require parameter tuning, add computational expense, and
in the case of filtering/SVV can pollute the solution accuracy
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Background
Summation-by-parts property

Modern formulations based on the summation-by-parts (SBP)
property produce mathematical guarantees that numerical
schemes will respect certain properties of the partial differential
equations they approximate

Exisiting provably stable high-order methods for conservation
laws on tri/tet elements employ multidimensional SBP operators4

which require O(p2d ) operations – much more costly at higher
orders than O(pd+1) tensor-product schemes on quads or hexes

p = 2 p = 4 p = 6 p = 8 p = 10

4Hicken, Del Rey Fernández, and Zingg, 2016; Chen and Shu, 2017; Del
Rey Fernández, Hicken, and Zingg, 2018; Crean et al., 2018; Chan, 2018.
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Overview
Research objectives and contributions

Objective: Extend the summation-by-parts framework to
spectral-element methods in collapsed coordinates, combining:

Efficiency of arbitary-order tensor-product operators
Robustness of energy-stable/entropy-stable SBP formulations
Automation and geometric flexibility of triangles/tetrahedra

This presentation will focus on discretizations on curved triangular
meshes which are energy stable for the linear advection equation

The same operators can be used for entropy-stable formulations
applied to Euler/Navier-Stokes, and a similar approach can be
taken in three dimensions (both are the focus of ongoing work)
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Overview
General approach

1 Represent the solution on a
canonical reference element Ω̂ ⊂ Rd

in terms of a nodal or modal basis
supporting sum factorization

2 Construct tensor-product
spectral-element operators in
collapsed coordinates satisfying a
discrete analogue of integration by
parts for functions U,V ∈ C 1(Ω̂):

∫
Ω̂

U ∂V
∂ξm

dξ+
∫

Ω̂

∂U
∂ξm

V dξ =
Nf∑
ζ=1

∫
Γ̂(ζ)

UV n̂m dŝ

Ω̂

n̂(2)

n̂(3)

n̂(1)
Γ̂(1)

Γ̂ (2)

Γ̂(3)
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Overview
General approach

ReferenceCollapsed Physical

3 Build SBP operators on each physical element from those on
the reference element using the skew-symmetric splitting
proposed by Crean et al. (2018)

4 Recast the action of all physical operators in terms of
one-dimensional operations along lines of constant η1 and
η2 to obtain matrix-free sum-factorization algorithms
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Preliminaries
Gaussian quadrature and Lagrange polynomials in one dimension

Fundamental building blocks of spectral collocation methods:

Gaussian quadrature rules with nodes {ξ(i)}i∈{0:q} and
weights {ω(i)}i∈{0:q}, where

∫ 1
−1 V (ξ) dξ ≈

∑q
i=0 V (ξ(i))ω(i)

is exact for all V ∈ Pτ ([−1, 1])

Lagrange polynomials {`(i)}i∈{0:q} such that `(i)(ξ(j)) = δij

Legendre-Gauss
(LG, τ = 2q + 1)

Legendre-Gauss-Radau
(LGR, τ = 2q)

Legendre-Gauss-Lobatto
(LGL, τ = 2q − 1)
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Preliminaries
One-dimensional operations using Lagrange polynomials

Lagrange polynomials enable the following operations on [−1, 1]:

Nodal differentiation – exact for V ∈ Pq([−1, 1])
dV
dξ (ξ(0))

...
dV
dξ (ξ(q))

 ≈


d
dξ `

(0)(ξ(0)) · · · d
dξ `

(q)(ξ(0))
... . . . ...

d
dξ `

(0)(ξ(q)) · · · d
dξ `

(q)(ξ(q))


︸ ︷︷ ︸

=: D


V (ξ(0))

...
V (ξ(q))



Boundary evaluation – exact at least for U,V ∈ Pq([−1, 1])

UV
∣∣∣1
−1
≈


U(ξ(0))

...
U(ξ(q))


T 

`(0)`(0)|1−1 · · · `(0)`(q)|1−1
... . . . ...

`(q)`(0)|1−1 · · · `(q)`(q)|1−1


︸ ︷︷ ︸

=: E


V (ξ(0))

...
V (ξ(q))


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Preliminaries
One-dimensional SBP property for spectral collocation operators

A stable approximation requires the constituent matrix operators
to satisfy the SBP property (Kreiss and Scherer, 1974)∫ 1

−1
U dV

dξ dξ
≈
+
∫ 1

−1

dU
dξ V dξ

≈

= UV
∣∣∣1
−1

≈

uTMDv + uTDTMv = uTEv ,

where SPD mass matrix M defines norm in which stability is proven

Theorem:5 One-dimensional spectral collocation operators satisfy
the SBP property MD + DTM = E with diagonal mass matrix
Mij = ω(i−1)δij for positive quadrature rules of degree τ ≥ 2q − 1

5Carpenter and Gottlieb, 1996; Del Rey Fernández, Boom, and Zingg, 2014
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Approximation on the Reference Element
Collapsed coordinate transformation

Any point η ∈ [−1, 1]2 can be mapped onto the right-angled
triangle Ω̂ := {ξ ∈ [−1, 1]2 : ξ1 + ξ2 ≤ 0} as ξ = χ(η), where

χ(η) :=
[

1
2 (1 + η1)(1− η2)− 1

η2

]

To integrate on the triangle, we use a change of variables to obtain∫
Ω̂

V (ξ) dξ =
∫ 1

−1

∫ 1

−1
V (χ(η))

(1− η2
2

)
dη1dη2,

and, avoiding the singularity η2 = 1, the chain rule gives[
∂
∂ξ1

V (ξ)
∂
∂ξ2

V (ξ)

]∣∣∣∣∣
ξ=χ(η)

= 2
1− η2

[
1 0

1
2 (1 + η1) 1

2 (1− η2)

][
∂
∂η1

V (χ(η))
∂
∂η2

V (χ(η))

]
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Approximation on the Reference Element
Nodal and modal bases in collapsed coordinates

−→
⊗
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1.0

2

Using the nodal sets {η(i)
1 }i∈{0:q1} and {η(i)

2 }i∈{0:q2}, a nodal basis
can be constructed from one-dimensional Lagrange polynomials as

`(σ(α))(χ(η)) := `
(α1)
1 (η1)`(α2)

2 (η2),

ordered as σ : {0 : q1} × {0 : q2} → {1 : (q1 + 1)(q2 + 1)}, where
we assume that there is no node at the singularity η2 = 1
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Approximation on the Reference Element
Nodal and modal bases in collapsed coordinates

Theoretically, the singularity does not pose a significant challenge
for the approximation (c.f. Shen, Wang, and Li, 2009) – however,
resolution is concentrated near the singularity

Resolution is a good thing, but this is a case of too much of
a good thing because resolution limits the size of explicit
time steps (Dubiner, 1991)

Proriol-Koornwinder-Dubiner (PKD) orthogonal basis for the
total-degree p polynomial space Pp(Ω̂) avoids this issue and has a
“warped” tensor-product structure supporting sum factorization:

φ(π(α))(χ(η)) :=
√

2P(0,0)
α1 (η1)(1− η2)α1P(2α1+1,0)

α2 (η2),

where π : {α ∈ N2
0 : α1 + α2 ≤ p} → {1 : (p + 1)(p + 2)/2} and

P(a,b)
k (η) denotes a normalized Jacobi polynomial of degree k
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Approximation on the Reference Element
Nodal and modal bases in collapsed coordinates

We take one of two approaches in this work:

1 Nodal formulation

Collocate the solution degrees of freedom and fluxes at
tensor-product quadrature points in collapsed
coordinates, apply operators to nodal values

2 Modal formulation

Solution degrees of freedom are expansion coefficients for
PKD basis (do not correspond to nodal values)

Evaluate fluxes at tensor-product quadrature points in
collapsed coordinates and apply operators to nodal values

Tensor-product structure of PKD basis permits evaluation at O(pd )
collapsed tensor-product quadrature nodes in O(pd+1) operations
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Approximation on the Reference Element
Tensor-product summation-by-parts operators on the triangle

Integration must be performed over the volume (i.e. interior) and
each facet (i.e. edge) of the reference triangle:

Volume quadrature – change of variables leads to

ξ(σ(α)) := χ
(
η

(α1)
1 , η

(α2)
2

)
, ω(σ(α)) := ω

(α1)
1

(
1− η(α2)

2
2 ω

(α2)
2

)

Facet quadrature – can align with volume quadrature nodes
for more efficient extrapolation from volume to facets

Facet quadrature nodes aligned Facet quadrature nodes not aligned
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Approximation on the Reference Element
Tensor-product summation-by-parts operators on the triangle

Theorem:6 Spectral collocation operators on the triangle given by

D(m)
ij := ∂`(j)

∂ξm
(ξ(i)), Mij := ω(i)δij ,

R(ζ)
ij := `(j)(ξ(ζ,i)), B(ζ)

ij := ω(ζ,i)δij

are accurate to degree p = min(q1, q2) and satisfy the SBP
property (Hicken, Del Rey Fernández, and Zingg, 2016)

MD(m) +
(
D(m))TM =

Nf∑
ζ=1

n̂(ζ)
m
(
R(ζ))TB(ζ)R(ζ),

for one-dimensional quadrature rules of at least degree 2q1 and 2q2
in the η1 and η2 directions, respectively

6Montoya and Zingg, 2022, Lemma 3.1
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Approximation on the Reference Element
Tensor-product summation-by-parts operators on the triangle

Remarks:

These operators exist for all p ∈ N and can be evaluated in
O(pd+1) operations as opposed to the O(p2d ) required for
non-tensor-product SBP operators (i.e. ∼ p3 vs. ∼ p4)

Analysis rules out some choices such as LGL quadrature in η1
or Jacobi-Gauss(-Radau) quadrature in η2

We can use the proposed operators within any numerical
framework employing multidimensional SBP operators7

7Including the entropy-stable schemes reviewed in Chen and Shu (2020)
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Extension to Curved Elements
Mapping from reference to physical coordinates

Consider a smooth, time-invariant mapping X(κ) : Ω̂→ Ω(κ),
where Ω(κ) ⊂ Rd is an element in the mesh T h := {Ω(κ)}κ∈{1:Ne}

Define J (κ)(ξ) := det(∇ξX(κ)(ξ)), where ∇ξX(κ)(ξ) ∈ Rd×d is
the Jacobian of the mapping, and assume J (κ)(ξ) > 0 for all ξ ∈ Ω̂
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Extension to Curved Elements
Mapping from reference to physical coordinates

Evaluate geometric terms at volume and facet quadrature nodes as

J (κ)
ij := J (κ)(ξ(i))δij ,

J (κ,ζ)
ij := ‖J (κ)(ξ(ζ,i))(∇ξX(κ)(ξ(ζ,i)))−Tn̂(ζ)‖2δij ,

Λ(κ,m,n)
ij :=

[
J (κ)(ξ(i))(∇ξX(κ)(ξ(i)))−1]

mnδij ,

N(κ,ζ,n)
ij :=

[
J (κ)(ξ(ζ,i))(∇ξX(κ)(ξ(ζ,i)))−Tn̂(ζ)]

nδij

In two dimensions, the discrete metric identities/geometric
conservation law (Thomas and Lombard, 1979) are satisfied
automatically8 if X(κ) is a polynomial of degree pmap ≤ p + 1

Mapping in this work uses Lagrange polynomials on symmetric
nodal sets (only need multidimensional operators in preprocessing)

8Otherwise, the exact metrics must be replaced by approximations such as those of
Kopriva (2006) or Crean et al. (2018)
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Extension to Curved Elements
Summation-by-parts operators on mapped elements

Skew-symmetric formulation from Crean et al. (2018) results in

Q(κ,n) := 1
2

d∑
m=1

(
Λ(κ,m,n)MD(m) −

(
D(m))TMΛ(κ,m,n)

)

+ 1
2

Nf∑
ζ=1

(
R(ζ))TB(ζ)N(κ,ζ,n)R(ζ)

Theorem:9 Derivative operator D(κ,ζ) := (MJ (κ))−1Q(κ,ζ) is an
approximation of order p = min(q1, q2) to ∂/∂xn and satisfies the
SBP property on the physical element as

Q(κ,n) +
(
Q(κ,n))T =

Nf∑
ζ=1

(
R(ζ))TB(ζ)N(κ,ζ,n)R(ζ)

9Adapted from Crean et al. (2018, Theorem 5)
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Putting It All Together
Discontinuous Galerkin formulation

Integrate conservation law ∂tU +∇x · F (U) = 0 by parts on
Ω(κ) ∈ T h against a test function V and insert numerical flux F ∗:∫

Ω(κ)

(
V ∂U
∂t −∇xV · F (U)

)
dx +

∫
∂Ω(κ)

VF ∗(U,U+,n) ds = 0

Nodal formulation – Evaluate flux components at volume
quadrature nodes f (h,κ,n)(t) in terms of nodal coefficients
u(h,κ)(t) and use R(ζ)u(h,κ)(t) from interior and exterior states
to obtain numerical flux at facet quadrature nodes f (∗,κ,ζ)(t)

Modal formulation – Compute nodal values in terms of
modal coefficients ũ(h,κ)(t) as u(h,κ)(t) = V ũ(h,κ)(t), where
Vij = φ(j)(ξ(i)), then compute f (h,κ,n)(t) and f (∗,κ,ζ)(t)
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Putting It All Together
Algebraic discretization using SBP operators

Encapsulating the skew-symmetric splitting within the weak-form
stiffness operator

(
Q(κ,n))T, we obtain the nodal formulation

MJ (κ) du(h,κ)(t)
dt −

d∑
n=1

(
Q(κ,n))Tf (h,κ,n)(t)

+
Nf∑
ζ=1

(
R(ζ))TB(ζ)J (κ,ζ)f (∗,κ,ζ)(t) = 0

and the modal formulation

V TMJ (κ)V dũ(h,κ)(t)
dt − V T

( d∑
n=1

(
Q(κ,n))Tf (h,κ,n)(t)

+
Nf∑
ζ=1

(
R(ζ))TB(ζ)J (κ,ζ)f (∗,κ,ζ)(t)

)
= 0
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Putting It All Together
Theoretical analysis

Theorem:10 The proposed nodal and modal schemes are:
Element-wise and globally conservative
Free-stream preserving (i.e. d

dt u(h,κ)(t) = 0 for constant state)
Energy conservative (resp. dissipative) for the linear advection
equation ∂tU +∇x · (aU) = 0 when used with a central (resp.
upwind) numerical flux

For periodic advection problems, we have:

d
dt

( Ne∑
κ=1

1TMJ (κ)u(h,κ)(t)
)

= 0

d
dt

( Ne∑
κ=1

1
2
(
u(h,κ)(t)

)TMJ (κ)u(h,κ)(t)
)
≤ 0

10See Montoya and Zingg, 2022, Theorems 4.1 – 4.3, for precise statement/proofs
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Putting It All Together
Efficient implementation

Implementation in Julia code CLOUD.jl11 applies physical
operators such as

(
Q(κ,n))T and

(
R(ζ))TB(ζ)J (κ,ζ) using lazy

evaluation – action on a vector computed using a strategy
dispatched at runtime:

Reference operator – evaluate action of physical operators
using matrices such as D(m) and R(ζ) formed in preprocessing

Physical operator – explicitly form physical operator
matrices in preprocessing step and store for each element

Tensor product – Evaluate physical operators in terms of
one-dimensional operators (applicable only to collapsed
formulations and standard quad/hex schemes)

11Conservation Laws on Unstructured Domains – available at
https://github.com/tristanmontoya/CLOUD.jl

https://github.com/tristanmontoya/CLOUD.jl
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Putting It All Together
Operator evaluation strategies for (Q(κ,n))T

Collapsed

Multidimensional
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Putting It All Together
Operator evaluation strategies for (R(ζ))TB(ζ)J (κ,ζ)

Collapsed

Multidimensional
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Numerical Experiments
Problem setup and mesh

Solve the linear advection equation with a constant wave speed
of a := [1, 1]T on a periodic square domain Ω := (0, 1)2

Warp a uniform mesh with Ne elements using Lagrange basis of
degree p to mimic high-order meshing of complex geometries
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0.0
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Example mesh for p = 4 and Ne = 32
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1.2

0.9

0.6

0.3

0.0

0.3

0.6

0.9

1.2

U
0 (

x)

Sinusoidal initial condition
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Numerical Experiments
Semi-discrete operator spectra for p = 4 and Ne = 32
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Nodal formulation
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Modal formulation
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Numerical Experiments
Grid refinement studies (reference 5th and 10th order slopes pictured)
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Numerical Experiments
Grid refinement studies (reference 5th and 10th order slopes pictured)
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Numerical Experiments
Grid refinement studies (reference 5th and 10th order slopes pictured)
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Conclusions

By extending the SBP approach to tensor-product
discretizations in collapsed coordinates, we have laid the
theoretical groundwork for robust schemes suitable for complex
geometries which extend efficiently to arbitrary order

Presented nodal formulation (diagonal mass matrix in curvilinear
coordinates, solution directly available at quadrature nodes) and
modal formulation (minimal DOF, allows for larger time steps)

Future work includes three-dimensional problems, entropy-stable
discretizations of nonlinear conservation laws

https://tjbmontoya.com/ https://github.com/tristanmontoya/CLOUD.jl

tristan.montoya@mail.utoronto.ca

https://tjbmontoya.com/
https://github.com/tristanmontoya/CLOUD.jl
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Questions?

10 100
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Grid refinement studies: skew-symmetric modal formulation for the linear advection equation

Upwind flux (energy dissipative)

Central flux (energy conservative)
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